LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER – NOVEMBER 2022

UMT 5502 – LINEAR ALGEBRA

Dept. No. Date: 25-11-2022 Time: 09:00 AM - 12:00 NOON

	PART – A						
Q. No	Answer ALL the questions	(10 x 2 = 20 Marks))				
1	If <i>V</i> is a vector space over <i>F</i> , then prove that $(-\alpha)v = -(\alpha v)$ for $\alpha \in F$ and	$v \in V$.					
2	Define Linearly dependent vector.						
3	If <i>V</i> is a vector space over $F, u \in V$ and $\alpha \in F$, Prove that $ \alpha u = \alpha u $.						
4	Define an orthonormal set.						
5	If <i>V</i> is finite dimensional vector space over <i>F</i> and if $T \in A(V)$ is right invertible, then prove that <i>T</i> is invertible.						
6	Define a characteristic vector of a linear transformation T .						
7	When do you say $S, T \in A(V)$ are similar?						
8	Define invariant subspace.						
9	Define Hermitian adjoint.						
10	If $T \in A(V)$ is unitary then prove that $TT^* = 1$.						
	PART – B						
Answer any FIVE questions(5 x 8 = 40 Marks)							
11	(a) Let V be a vector space over F and S be a nonempty subset of V. prove that $L(S)$ is a subspace of V.	Then (4)					
	(b) If <i>F</i> is a field of real numbers, verify whether the vectors $(1,2,1), (2,1,0)$ and $(1,-1,2)$ are linearly independent.	(4)					
12	State and prove triangular inequality in an inner product space. (8)						
13	If $\lambda \in F$ is a characteristic root of $T \in A(V)$, then prove that for any polynomial	mial (8)					
	$q(x) \in F(x), q(\lambda)$ is a characteristic root of $q(T)$.						
14	Let V be the vector space of polynomials of degree 3 or less over F. In V de by $(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3)T = \alpha_1 + 2\alpha_2 x + 3\alpha_3 x^2$. Compute the mat in the basis (a) 1, x, x^2 , x^3 (b) 1, $1+x$, $1+x^2$, $1+x^3$	efine T (8) trix of T					

Max. : 100 Marks

15	Prove th its chara	Prove that the Hermitian linear transformation T is nonnegative if and only if all of its characteristic roots are nonnegative.			
16	Prove the if the co	hat if V is finite-dimensional over F, then $T \in A(V)$ is invertible if and only onstant term of the minimal polynomial for T is not 0.	y (8)		
17	If V is the the extended	If V is the internal direct sum of $U_1, U_2,, U_n$, then prove that V is isomorphic to (8) the external direct sum of $U_1, U_2,, U_n$.			
18	Prove the	Prove that if $T \in A(V)$ then $T^* \in A(V)$. Moreover, for all $S, T \in A(V)$ and all $\lambda \in F$, show (8)			
	that				
	(<i>i</i>) $(T^*)^* = T$.				
	(<i>ii</i>) $(S+T)^* = S^* + T^*$.				
	$(iii) (\lambda S)^* = \bar{\lambda} S^*.$				
	$(iv) (ST)^* = T^*S^*.$				
		PART – C			
Answer any TWO question $(2 \times 20 = 20 \text{ Marks})$					
	·	-			
19	If V and	d W are of dimensions m and n , respectively over F , then prove that	(20)		
	Hom (V, W) is of dimension mn over F.				
20	(a)	State and prove Schwarz inequality	(8)		
	(b)	Let V be a finite dimensional inner product space, then prove that V has	s (12)		
	~ /	an orthonormal set as a basis			
21	(a)	If <i>V</i> is a finite dimensional over <i>F</i> , show that for $S, T \in A(V)$ (<i>i</i>) $r(ST) \le r(T)$ (<i>ii</i>) $r(TS) \le r(T)$ (<i>iii</i>) $r(ST) = r(TS) = r(T)$ for <i>S</i> regular in $A(V)$.	(10)		
	(b)	Prove that the linear transformation T on V is unitary if and only if it take	s (10)		
		an orthonormal basis of V into an orthonormal basis of V .			
22	Prove the	at if $T \in A(V)$ has all its characteristic roots in F, then there is a basis of V in	n (20)		
	which the matrix of T is triangular.				
1					
