LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 FIFTH SEMESTER - NOVEMBER 2022
 UMT 5502 - LINEAR ALGEBRA

Date: 25-11-2022
Time: 09:00 AM - 12:00 NOON

PART - A

Q.

Answer ALL the questions

($\mathbf{1 0 \times 2} \mathbf{2} \mathbf{2 0}$ Marks)
o
1 If V is a vector space over F, then prove that $(-\alpha) v=-(\alpha v)$ for $\alpha \in F$ and $v \in V$.
2 Define Linearly dependent vector.
3 If V is a vector space over $F, u \in V$ and $\alpha \in F$,Prove that $\|\alpha u\|=|\alpha|\|u\|$.
4 Define an orthonormal set.
If V is finite dimensional vector space over F and if $T \in A(V)$ is right invertible, then prove that 5 T is invertible.

6 Define a characteristic vector of a linear transformation T.
7 When do you say $S, T \in A(V)$ are similar?
8 Define invariant subspace.
9 Define Hermitian adjoint.
10 If $T \in A(V)$ is unitary then prove that $T T^{*}=1$.

PART - B

Answer any FIVE questions
(5 x $8=40$ Marks)

11 (a) Let V be a vector space over F and S be a nonempty subset of V. Then prove that $L(S)$ is a subspace of V.
(b) If F is a field of real numbers, verify whether the vectors
$(1,2,1),(2,1,0)$ and $(1,-1,2)$ are linearly independent.
12 State and prove triangular inequality in an inner product space.

13 If $\lambda \in F$ is a characteristic root of $T \in A(V)$,then prove that for any polynomial $q(x) \in F(x), q(\lambda)$ is a characteristic root of $q(T)$.

14 Let V be the vector space of polynomials of degree 3 or less over F . In V define T by $\left(\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3}\right) T=\alpha_{1}+2 \alpha_{2} x+3 \alpha_{3} x^{2}$. Compute the matrix of T in the basis
(a) $1, x, x^{2}, x^{3}$
(b) $1,1+x, 1+x^{2}, 1+x^{3}$

15 Prove that the Hermitian linear transformation T is nonnegative if and only if all of its characteristic roots are nonnegative.

16 Prove that if V is finite-dimensional over F , then $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 0 .

17 If V is the internal direct sum of $U_{1}, U_{2}, \ldots, U_{n}$, then prove that V is isomorphic to the external direct sum of $U_{1}, U_{2}, \ldots, U_{n}$.

18 Prove that if $T \epsilon A(V)$ then $T^{*} \epsilon A(V)$. Moreover, for all $S, T \epsilon A(V)$ and all $\lambda \epsilon F$, show that
(i) $\left(T^{*}\right)^{*}=T$.
(ii) $(S+T)^{*}=S^{*}+T^{*}$.
(iii) $(\lambda S)^{*}=\bar{\lambda} S^{*}$.
(iv) $(S T)^{*}=T^{*} S^{*}$.

PART - C

Answer any TWO question

19 If V and W are of dimensions m and n, respectively over F, then prove that $\operatorname{Hom}(V, W)$ is of dimension $m n$ over F.

20 (a) State and prove Schwarz inequality
(b) Let V be a finite dimensional inner product space, then prove that V has an orthonormal set as a basis

21 (a) If V is a finite dimensional over F, show that for $S, T \in A(V)$
(i) $r(S T) \leq r(T)(i i) r(T S) \leq r(T)$ (iii) $r(S T)=r(T S)=r(T)$ for S regular in $A(V)$.
(b) Prove that the linear transformation T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V.

22 Prove that if $T \epsilon A(V)$ has all its characteristic roots in F, then there is a basis of V in which the matrix of T is triangular.

