LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS FIFTH SEMESTER - NOVEMBER 2022
 UMT 5601 - GRAPH THEORY

Date: 30-11-2022
Time: 09:00 AM - 12:00 NOON

SECTION - A

ANSWER ALL QUESTIONS:
$(10 \times 2=20)$

1. Differentiate complete and connected graphs.
2. Define Euler graph.
3. When a vertex is said to be incident and adjacent.
4. What is a Null graph? Give one example.
5. Define Hamiltonian path.
6. When a graph is said to be a Unicursal line?
7. A graph with atleast one vertex is also called a tree. True or False. Justify.
8. Prove that T is a tree if there is one and only path between every pair of vertices in a graph G.
9. Show that every bi-partite graph is $2-$ chromatic.
10. Define digraph.

SECTION - B

ANSWER ANY FIVE QUESTIONS:

11. Prove "A graph G is disconnected if and only if its vertex set V can be partitioned into two nonempty, disjoint subsets v_{1} and v_{2} such that there exists no edge in G whose one end vertex is in subset v_{1} and the other in subset v_{2} ".
12. Find the maximum and minimum degree of the following graphs:
(a)

(b)

13. If n is an odd number and $n \geq 3$, prove that in a complete graph with n vertices there are $(n-1) / 2$ edge-disjoint Hamiltonian circuits.
14. A tree with n vertices has $n-1$ edges. - Justify.
15. Show that every circuit has a even number of edges in common without any cut set.
16. Prove that the vertex connectivity of a graph cannot exceed the edge connectivity of G.
17. Show that the complete bipartite graph $K_{3,3}$ is non-planar.
18. Prove that a graph with atleast one edge is 2 - chromatic if and only if it has no cycles of odd length.

SECTION - C

ANSWER ANY TWO QUESTIONS:

19. (a) Show that a simple graph with n vertices and k components can have at most $\frac{(n-k)(n-k+1)}{2}$ edges.
(b) Show that the number of vertices of odd degree in a graph G is always even with n vertices and e edges.
20. (a) Prove that a connected graph G is an Euler graph if and only if all the vertices of G is even.
(b) Show that a graph G with n vertices and $\mathrm{n}-1$ edges and no cycles is connected.
21. (a) Prove that the ring sum of any two cut-sets in a graph is either a third cut-set or an edge disjoint union of cut-sets.
(b) Show that the maximum vertex connectivity of a graph G with n vertices and e edges is the integral part of $\frac{2 e}{n}$.
22. (a) State and prove Euler's formula.
(b) Show that an n - vertex graph is a tree iff its chromatic polynomial is $P_{n}(\lambda)=\lambda(\lambda-1)^{n-1}$.

@@@@@@

