LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER – **NOVEMBER 2022**

UMT 5601 – GRAPH THEORY

SECTION - A

Date: 30-11-2022 Dept. No. Time: 09:00 AM - 12:00 NOON

ANSWER ALL QUESTIONS:

- 1. Differentiate complete and connected graphs.
- 2. Define Euler graph.
- 3. When a vertex is said to be incident and adjacent.
- 4. What is a Null graph? Give one example.
- 5. Define Hamiltonian path.
- 6. When a graph is said to be a Unicursal line?
- 7. A graph with atleast one vertex is also called a tree. True or False. Justify.
- 8. Prove that T is a tree if there is one and only path between every pair of vertices in a graph G.
- 9. Show that every bi-partite graph is 2 chromatic.
- 10. Define digraph.

SECTION – B

ANSWER ANY FIVE QUESTIONS:

- 11. Prove "A graph G is disconnected if and only if its vertex set V can be partitioned into two nonempty, disjoint subsets v_1 and v_2 such that there exists no edge in G whose one end vertex is in subset v_1 and the other in subset v_2 ".
- 12. Find the maximum and minimum degree of the following graphs:

- 13. If *n* is an odd number and $n \ge 3$, prove that in a complete graph with *n* vertices there are (n 1)/2 edge-disjoint Hamiltonian circuits.
- 14. A tree with n vertices has n 1 edges. Justify.
- 15. Show that every circuit has a even number of edges in common without any cut set.
- 16. Prove that the vertex connectivity of a graph cannot exceed the edge connectivity of G.
- 17. Show that the complete bipartite graph $K_{3,3}$ is non-planar.
- 18. Prove that a graph with at least one edge is 2 chromatic if and only if it has no cycles of odd length.

$(5 \times 8 = 40)$

(10 x 2 = 20)

Max. : 100 Marks

SECTION – C

ANSWER ANY TWO QUESTIONS:	$(2 \times 20 = 40)$
19. (a) Show that a simple graph with <i>n</i> vertices and <i>k</i> components can have at most $\frac{(n-1)^2}{(n-1)^2}$	$\frac{(k-k)(n-k+1)}{2}$ edges.
(b) Show that the number of vertices of odd degree in a graph G is always even wit	h <i>n</i> vertices and <i>e</i>
edges.	(15+5)
20. (a) Prove that a connected graph G is an Euler graph if and only if all the vertices of	f G is even.
(b) Show that a graph G with n vertices and n-1 edges and no cycles is connected.	
	(10+10)
21. (a) Prove that the ring sum of any two cut-sets in a graph is either a third cut-set or	an edge disjoint
union of cut-sets.	
(b) Show that the maximum vertex connectivity of a graph G with n vertices and e	edges is the
integral part of $\frac{2e}{n}$.	(10+10)
22. (a) State and prove Euler's formula.	
(b) Show that an n – vertex graph is a tree iff its chromatic polynomial is $P_n(n)$	$\lambda) = \lambda(\lambda - 1)^{n-1}.$

(10+10)

aaaaaaa

2