# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034 

B.Sc. DEGREE EXAMINATION - MATHEMATICS

## SIXTH SEMESTER - NOVEMBER 2022

UMT 6501 - COMPLEX ANALYSIS

Date: 01-12-2022
Time: 01:00 PM - 04:00 PM
Dept. No. $\square$

## PART - A

Answer ALL Questions:

1. Show that the function $f(z)=\operatorname{Re} z$ is nowhere differentiable.
2. Find the singular points of the function $f(z)=\frac{z^{3}+4}{\left(z^{2}-3\right)\left(z^{2}+1\right)}$.
3. Define harmonic function.
4. Evaluate $\int_{c} \frac{d z}{z-1}$ where $C$ is the circle $|z-2|=3$.
5. State Cauchy - Goursat's theorem for a continuous function $f$.
6. Give the Maclaurin's series of $e^{z}$.
7. State maximum modulus principle.
8. What is an essential singularity?
9. Find the residue of $\frac{z^{2}}{z^{2}+a^{2}}$ at $z=a i$.
10. Define linear fractional transformation.

## PART - B

## Answer any FIVE Questions:

11. Show the function $f(z)=\sqrt{|x y|}$ is not differentiable but satisfies the Cauchy - Riemann equations.
12. State and prove the polar form of the Cauchy - Riemann equations.
13. Find the harmonic conjugate of $u(x, y)=y^{3}-3 x^{2} y$.
14. Let $C$ be the arc of the circle $|z|=2$ from $z=2$ to $z=2 i$ that lies in the first quadrant. Prove that $\left|\int_{C} \frac{z+4}{z^{3}-1} d z\right| \leq \frac{6 \pi}{7}$.
15. State Liouville's theorem and deduce the Fundamental theorem of algebra.
16. Expand $f(z)=\frac{-1}{(z-1)(z-2)}$ in a Laurent's series in (i) $1<|z|<2$ and (ii) $|z|>2$.
17. State and prove Cauchy residue theorem.
18. Find the bilinear transformation which maps $z_{1}=-1, z_{2}=0$ and $z_{3}=1$ onto the points $w_{1}=$ $-i, w_{2}=1$ and $w_{3}=i$.

## PART - C

## Answer any TWO Questions:

19. State and prove the necessary and sufficient condition for a function $f(z)$ to be differentiable at a point.
20. (a) If $w(t)$ is a piecewise continuous complex valued function defined on an interval $a \leq t \leq b$, then prove that $\left|\int_{a}^{b} w(t) d t\right| \leq \int_{a}^{b}|w(t)| d t$.
(b) Evaluate $\int_{C} \frac{\exp (2 z)}{z^{4}} d z$, where C is the positively oriented unit circle $|z|=1$.
21. (a) State and prove Taylor's Theorem.
(b) Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$ using method of contour integration.
22. (a) State and prove Rouche's theorem.
(b) Determine the value of the integral $\int_{C} \frac{5 z-2}{z(z-1)} d z$ using residue theorem where $C$ is the circle $|z|=2$ described counter clockwise.
