LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034			
B.S.	. DEGREE EXAMINAT	ION – PHYSICS	
FIRST SEMESTER – APRIL 2016			
PH 1503/1502/1501/1500 - PROPERTIES OF MATTER & ACOUSTICS			
Constant and Assess			
Date: 02-05-2016 De	pt. No.	Max. : 100 Marks	
Time: 01:00-04:00			
$\mathbf{PART} - \mathbf{A} $			
Answer ALL questions:	antilavar	(10x2=20 marks)	
2 Differentiate between uniform and	non-uniform bending		
3. Define coefficient of viscosity and	give its unit.		
4. State the working principle of a diff.	usion pump.		
5. What is surface tension? Give its up	nit and dimension.	2	
6. Calculate the height to which liquid	l will rise in a capillary tu 10^{-3} Nm ⁻³	be of radius 0.2×10^{-5} m. Density and surface	
7 A source of sound has a frequency	of 512 Hz and amplitud	e of 0.25 cm. Calculate the flow of energy	
Given: Velocity of sound: 340 ms ⁻¹ and density of air: 1.3 kgm ⁻³ .			
8. What are beats?			
9. Explain magnetostriction effect?			
10. What is piezo-electric effect?			
Answer any FOUD questions:	PART – B	(4x75-30 marks)	
Answer any FOUR questions:	the handing moment of a	(4x7.5-50 marks)	
11. a) Derive the general expression for the bending moment of a beam. $(3+2.3)$			
b) A steel wire of 1 mm radius is be	int in the form of a circula $\frac{1}{2}$	ir arc of radius 50 cm.	
Calculate the bending moment.	Siven: $E = 2 \times 10^{11} \text{ Nm}^2$		
12. a) Derive Stoke's formula for the ve	slocity of a small sphere f	alling through a viscous	
liquid using the method of dime	nsions.	(5+2.5)	
b) A steel ball of radius $2x10^{-3}$ m fa	ls in a vertical column of	castor oil of density	
980 kgm ⁻³ . The density of steel	ball is 7700 kgm ⁻³ . Calcu	late the product of coefficient viscosity and	
terminal velocity.			
13. a) Discuss the construction and wor	king of a rotary oil pump.	(5+2.5)	
b) The receiver of an air pump has	a capacity of 1.5 litres and	l the pressure of air is 76	
cm of Hg. If the barrel has a capa	city of 500 cc, find the pr	essure after 3 strokes.	
14. a) Give an account of molecular the	ory of surface tension.		
b) Calculate the excess pressur	e inside a soap bubble c	of radius $3x10^{-3}$ m. Surface tension of soap	
solution is $20 \times 10^{-3} \text{ Nm}^{-1}$. Also	calculate the surface ener	rgy. (5+2.5)	
15. Derive an expression for the velocit	y of a transverse wave in	a stretched string.	
16. a) Explain how the absorption coeff	ficient of a material is dete	ermined. (5+2.5)	
b) A hall of volume 5500 m^3 is found to have a reverberation time of 2.3 sec. The			

sound absorbing surface of the hall has an area of 750 m^2 . Calculate the absorption coefficient.

PART – C			
Answer any FOUR questions: (4x	(12.5=50 marks)		
17. a) Derive an expression for the period of oscillations of a torsional pendulum.			
b) Explain the experimental method to determine the rigidity modulus of a wire and moment of inertia of the disc about its axis by using torsional pendulum.	(4.5+8)		
18. a) Describe Koenig's method of determining the Young's modulus of the beam.			
b) A bar of length 1 m and cross section 5×10^{-3} m ² is supported at its two ends and loaded in the middle. The depression observed in the middle is 1.96×10^{-3} m, when a load of 0.1 kg is placed. Calculate the Young's modulus of the material.	n (8.5+4)		
19. a) Derive Poiseuille's formula for the rate of flow of liquid through a capillary tubeb) Discuss the effect of temperature and pressure on viscosity.	e. (8.5+4)		
20. a) Describe the Jaeger's method for the determination of surface tension of a liquid.b) Discuss the advantages and disadvantages of the method.	(6.5+6)		
21. a) Explain Doppler effect.b) Find an expression for the change in frequency when both the source of sound and the observer are in relative motion.	(2.5+10)		
22. a) Describe the method of producing ultrasonic waves using magnetostriction methodb) Discuss any six applications of ultrasonic waves.	od. (6.5+6)		

* * * * * * *