LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS
 FIRST SEMESTER - APRIL 2016

PH 1503/1502/1501/1500 - PROPERTIES OF MATTER \& ACOUSTICS

Date: 02-05-2016
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00
PART - A

Answer ALL questions:
(10x2=20 marks)

1. Distinguish between a beam and a cantilever.
2. Differentiate between uniform and non-uniform bending.
3. Define coefficient of viscosity and give its unit.
4. State the working principle of a diffusion pump.
5. What is surface tension? Give its unit and dimension.
6. Calculate the height to which liquid will rise in a capillary tube of radius $0.2 \times 10^{-3} \mathrm{~m}$. Density and surface tension of the liquid is given as $800 \mathrm{kgm}^{-3}$ and $26 \times 10^{-3} \mathrm{Nm}^{-1}$.
7. A source of sound has a frequency of 512 Hz and amplitude of 0.25 cm . Calculate the flow of energy. Given: Velocity of sound: $340 \mathrm{~ms}^{-1}$ and density of air: $1.3 \mathrm{kgm}^{-3}$.
8. What are beats?
9. Explain magnetostriction effect?

10 . What is piezo-electric effect?

PART - B

Answer any FOUR questions:

(4x7.5=30 marks)

11. a) Derive the general expression for the bending moment of a beam.
b) A steel wire of 1 mm radius is bent in the form of a circular arc of radius 50 cm .

Calculate the bending moment. Given: $\mathrm{E}=2 \times 10^{11} \mathrm{Nm}^{-2}$
12. a) Derive Stoke's formula for the velocity of a small sphere falling through a viscous liquid using the method of dimensions.
b) A steel ball of radius $2 \times 10^{-3} \mathrm{~m}$ falls in a vertical column of castor oil of density $980 \mathrm{kgm}^{-3}$. The density of steel ball is $7700 \mathrm{kgm}^{-3}$. Calculate the product of coefficient viscosity and terminal velocity.
13. a) Discuss the construction and working of a rotary oil pump.
b) The receiver of an air pump has a capacity of 1.5 litres and the pressure of air is 76 cm of Hg . If the barrel has a capacity of 500 cc , find the pressure after 3 strokes.
14. a) Give an account of molecular theory of surface tension.
b) Calculate the excess pressure inside a soap bubble of radius $3 \times 10^{-3} \mathrm{~m}$. Surface tension of soap solution is $20 \times 10^{-3} \mathrm{Nm}^{-1}$. Also calculate the surface energy.
15. Derive an expression for the velocity of a transverse wave in a stretched string.
16. a) Explain how the absorption coefficient of a material is determined.
b) A hall of volume $5500 \mathrm{~m}^{3}$ is found to have a reverberation time of 2.3 sec . The sound absorbing surface of the hall has an area of $750 \mathrm{~m}^{2}$. Calculate the absorption coefficient.

PART - C

Answer any FOUR questions:
17. a) Derive an expression for the period of oscillations of a torsional pendulum.
b) Explain the experimental method to determine the rigidity modulus of a wire and moment of inertia of the disc about its axis by using torsional pendulum.
18. a) Describe Koenig's method of determining the Young's modulus of the beam.
b) A bar of length 1 m and cross section $5 \times 10^{-3} \mathrm{~m}^{2}$ is supported at its two ends and loaded in the middle. The depression observed in the middle is $1.96 \times 10^{-3} \mathrm{~m}$, when a load of 0.1 kg is placed. Calculate the Young's modulus of the material.
19. a) Derive Poiseuille's formula for the rate of flow of liquid through a capillary tube.
b) Discuss the effect of temperature and pressure on viscosity.
20. a) Describe the Jaeger's method for the determination of surface tension of a liquid.
b) Discuss the advantages and disadvantages of the method.
21. a) Explain Doppler effect.
b) Find an expression for the change in frequency when both the source of sound and the observer are in relative motion.
22. a) Describe the method of producing ultrasonic waves using magnetostriction method.
b) Discuss any six applications of ultrasonic waves.

