PH 1813 - ELECTRONICS

Date: 28-04-2016
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

Part - A

Answer ALL Questions.
(10x2=20)

1. Explain the significance of the offset null adjustment in Op-amps.
2. Define the resolution of an A / D converter.
3. What is the role of the TEMP register of $\mu \mathrm{P} 8085$.
4. Write a program for $\mu \mathrm{P} 8085$ to determine the square root of a byte in memory.
5. Develop a program for $\mu \mathrm{P} 8085$ to complement memory locations 5000 h to 5050 h .
6. Write a subroutine for $\mu \mathrm{P} 8085$ which returns through A , the factorial of a byte passed through B.
7. Write notes on the ALE signal of $\mu \mathrm{P} 8085$.
8. Develop a program segment for $\mu \mathrm{P} 8085$ to clear all pending RSTn interrupts.
9. State the advantages of relative branching available in Z 80 over absolute branching.
10. Explain the use of the refresh register of $\mu \mathrm{P} Z 80$.
Part - B

Answer any FOUR Questions.
11. Explain the significance of virtual ground in an op-amp based inverting amplifier and derive an expression for the voltage gain.
12. With an example for each, explain all branch and call instructions of $\mu \mathrm{P} 8085$.
13. Explain the memory mapped I/O and the I/O mapped I/O schemes in $\mu \mathrm{P} 8085$ and discuss the various instructions associated with them.
14. Write notes on the software and hardware interrupts available in $\mu \mathrm{P} 8085$.
15. Illustrate with an example for each, all modes of addressing of data in $\mu \mathrm{P} \mathrm{Z80}$.
Part - C

Answer any FOUR Questions.
($4 \times 12.5=50$)
16. With a neat circuit diagram, explain how Op-amps may be used to solve second order differential equations.
17. Write a program for $\mu \mathrm{P} 8085$ to solve ${ }^{\mathrm{n} 1} \mathrm{C}_{\mathrm{r} 1}-{ }^{\mathrm{n} 2} \mathrm{C}_{\mathrm{r} 2}$. Use a subroutine for factorial.
18. Develop a program for $\mu \mathrm{P} 8085$ to generate 500 Hz using the SOD line whenever the LSB of an input port PA is in 1 state. The crystal frequency is $3 \mathrm{M} . \mathrm{Hz}$.
19. Explain with timing diagram, the sequence of events which take place when a maskable interrupt occurs and during its subsequent return in $\mu \mathrm{P} 8085$.
20. Develop ASM programs for Z 80 to (a) replace all 22 h by 2 Ah in a byte array of 80 h elements and (b) sort a byte array of 80 h elements.
($6+6.5$)

