LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - APRIL 2016

PH 1813 - ELECTRONICS

Date: 28-04-2016	Dept. No.	Max.: 100 Marks
Time: 01:00-04:00		

Part - A

Answer ALL Questions.

(10x2=20)

- 1. Explain the significance of the offset null adjustment in Op-amps.
- 2. Define the resolution of an A/D converter.
- 3. What is the role of the TEMP register of μP 8085.
- 4. Write a program for μ P8085 to determine the square root of a byte in memory.
- 5. Develop a program for μ P8085 to complement memory locations 5000h to 5050h.
- 6. Write a subroutine for μ P8085 which returns through A, the factorial of a byte passed through B.
- 7. Write notes on the ALE signal of μ P8085.
- 8. Develop a program segment for μ P8085 to clear all pending RSTn interrupts.
- 9. State the advantages of relative branching available in Z80 over absolute branching.
- 10. Explain the use of the refresh register of μP Z80.

Part - B

Answer any FOUR Questions.

(4x7.5=30)

- 11. Explain the significance of virtual ground in an op-amp based inverting amplifier and derive an expression for the voltage gain.
- 12. With an example for each, explain all branch and call instructions of μP8085.
- 13. Explain the memory mapped I/O and the I/O mapped I/O schemes in μP8085 and discuss the various instructions associated with them.
- 14. Write notes on the software and hardware interrupts available in μP8085.
- 15. Illustrate with an example for each, all modes of addressing of data in μP Z80.

Part - C

Answer any **FOUR** Questions.

(4x12.5=50)

- 16. With a neat circuit diagram, explain how Op-amps may be used to solve second order differential equations.
- 17. Write a program for μ P8085 to solve $^{n1}C_{r1}$ $^{n2}C_{r2}$. Use a subroutine for factorial.
- 18. Develop a program for μP8085 to generate 500Hz using the SOD line whenever the LSB of an input port PA is in 1 state. The crystal frequency is 3 M.Hz.
- 19. Explain with timing diagram, the sequence of events which take place when a maskable interrupt occurs and during its subsequent return in μ P8085.
- 20. Develop ASM programs for Z80 to (a) replace all 22h by 2Ah in a byte array of 80h elements and (b) sort a byte array of 80h elements. (6 + 6.5)
