LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - APRIL 2016

PH 1819 - ELECTRONICS AND PROGRAMMING

Date: 03-05-2016
Dept. No. \square Max. : 100 Marks
Time: 01:00-04:00

Part - A

Answer ALL Questions.
(10x2=20)

1. Design an OP-AMP based non inverting amplifier circuit with a gain of 2.5 .
2. What is meant by input offset voltage and output offset voltage?
3. Explain the role of the mod field in an operational code of $\mu \mathrm{P} 8086$.
4. Develop a program for $\mu \mathrm{P} 8086$ to unpack a two digit packed BCD number in AL.
5. Develop a programinr 086 to exchange the contents of two memory locations in the extra segment.
6. Develop a programitior shilition to find the factorial of a number using the LOOP instruction.

7. Write a note on the XLA1 instruction of $\mu \mathrm{p} 8086$.
8. With an example for each, explain any four data types in $\mathrm{C}++$?
9. Write a program in $\mathrm{C}++$ to accept from the keyboard the radius of a circle and display the area.
Part - B

Answer any FOUR Questions.
11. Solve using Op-amps the simultaneous equations, $2 \mathrm{X}+3 \mathrm{Y}=5$ and $\mathrm{X}+\mathrm{Y}=2$.
12. Explain the various shift and rotate instructions available in $\mu \mathrm{p} 8086$.
13. Develop an ASM program for $\mu \mathrm{P} 8086$ to check if the word variable N represents a leap year. If true, BL must be set to 1 else to 0 . (Hint: A leap year is divisible by 4 and not by 64 h).
14. With a block diagram explain how DMA transfers a datum by Bus Cycle Stealing.
15. Write a program in $\mathrm{C}++$ to accept an integer from the keyboard, find the factorial and display the same.
Part - C

Answer any FOUR Questions.
($4 \times 12.5=50$)
16. (a) Integrators are preferred to differentiators in analog computer applications-Justify.
(b) Solve using Op-amps, $\frac{d^{2} v}{d t^{2}}+b \frac{d v}{d t}+c v-v_{1}(t)=0 \quad(2.5+10)$
17. DPX and DPY are 32 bit and 16 bit unsigned numbers respectively. Develop an ASM program for $\mu \mathrm{P} 8086$ to find the product and store the result at DPZ. DPX, DPY and DPZ are word variables.
18. Develop an ASM program for $\mu \mathrm{P} 8086$ to sort a byte array in memory.
19. With a block diagram discuss bus buffering and latching in $\mu \mathrm{P} 8086$ operated in minimum mode.
20. Write a program in $\mathrm{C}++$ to accept two 3×3 integer matrices and to display the product matrix in proper format.

