LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

SECOND SEMESTER – APRIL 2016

PH 2503/PH 2501/PH 2500 - MECHANICS

CANTER THE ASSUME			
Date: 21-04-2016 Time: 01:00-04:00	Dept. No.] Max. : 100 Marks
Answer ALL questions	<u>+</u>	<u>Part A</u>	(10 x 2 = 20 marks)
1. State the law of Conservation of linear and angular momentum?			
2. Explain centre of mass.			
3. Define moment of a couple.			
4. Draw a solid tetrahedron and indicate the point of centre of gravity.			
5. State Fick's law of diffusion.			
6. What is velocity of effusion?			
7. What are generalised coordinates? Give an example.			
8.Define virtual work.			
9. State Law of areas and Law of elliptical orbit proposed by Kepler.			
10. Explain parking orbits.			
Part B			
Answer any FOUR ques	tions		(4 x 7.5 = 30 marks)
11. Prove that the oscillations of a torsional pendulum is simple			
12 Determine the meta centric height of a ship			
12. Determine the meta centric neight of a simp.			
13. An engine pumps water nom a tank at the rate of 5 kgm/sec and			
ejects from a nozzle 6 meters above the surface of the tank with a			
velocity of 10 meters per sec. Calculate the pressure difference			
between the surface and the nozzle.			
14. Find the centripetal acceleration in a bead sliding on an uniformly			
rotating wire.			

15. Define velocity of escape and hence deduce the formula to calculate it.

<u>Part C</u>

Answer any FOUR questions

(4 x 12.5 = 50 marks)

- 16. Derive the angular acceleration of a bifilar pendulum by non parallel threads (8) and find the time period of a bifilar pendulum when it is suspended by parallel threads. (4.5)
- 17. Obtain the centre of pressure of a triangular lamina immersed in a liquid with its (i) vertex on the surface (6)

(ii) one side on the surface (6.5)

- State and prove Bernoulli's theorem. (8) Hence apply it to find the velocity of efflux of a liquid using Torricelli's theorem. (4.5)
- Explain the significance of D'Alembert's principle (4) and hence deduce the Lagrange's equation from it. (8.5)
- 20. Explain with a neat diagram how 'G' can be measured by Boy's method.

\$\$\$\$\$\$