1

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

THIRD SEMESTER - APRIL 2016

PH 3506 – MATHEMATICAL PHYSICS

Date: 28-04-2016 Time: 09:00-12:00

Answer ALL the questions:

PART – A

- 1. Find the square root of the number (3 + 4 i).
- 2. What is a multiply connected region in a complex plane?
- 3. Calculate the gradient of $(x^2 + y^2)^{\frac{1}{2}}$
- 4. What is the geometrical meaning of a curl of a vector field?

Dept. No.

- 5. State the function of a half-wave rectifier.
- 6. If f(x) is odd in the interval –a to +a, then, $\int_{-a}^{+a} f(x) dx = ?$
- 7. If two rows of a square matrix are equal, what is the effect on the determinant?
- 8. Find the eigen values of the matrix $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$.
- 9. Define the forward difference operator.
- 10. State Trapezoidal rule for integration.

PART – B

Answer any FOUR questions:

11. (i) Deduce the Cauchy-Riemann equations for analytic functions.

(ii) Check whether the function $f(z) = \cos x - i \sinh y$ is analytic.

12. If z = x + iy, Prove i) cos $z = \cos x \cosh y - i \sin x \sinh y$ ii) sin $z = \sin x \cosh y + i \sinh y \cosh x$

- 13. State and prove Green's theorem in a plane.
- 14. Find the Fourier cosine series of f(x) = 1 for $0 \le x < T/2$ and f(x) = -1 for $-T/2 \le x < 0$.

15. Find the inverse of the matrix $\begin{bmatrix} 7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2 \end{bmatrix}$.

16. Fit a straight line by the least square method for the following data.

Х	0	0.5	1.0	1.5	2.0	2.5
У	0	1.5	3.0	4.5	6.0	7.5

Max. : 100 Marks

(10 x 2 = 20 Marks)

(4 x 7.5 = 30 Marks)

PART – C

Answer any four questions:

(4 x 12.5 = 50 Marks)

- 17. (i) State and prove Cauchy's integral theorem.
 - (ii) (a) Find the real and imaginary part of (i) $f(z) = z^2 + 2iz^*z$ (ii) Evaluate z^2dz around a unit circle in complex plane.
- 18. (i) Verify Gauss divergence theorem for $\iint (y^2 z \hat{i} + y^3 \hat{j} + xz \hat{k})$. dA over the boundary of the cube defined by $-1 \le x \le 1$, $-1 \le y \le 1$ and $0 \le z \le 2$.
 - (ii) Find the curl of $\frac{x\hat{i} + y\hat{j} + z\hat{k}}{(x^2 + y^2 + z^2)^{(\frac{1}{2})}}$, where \hat{i} , \hat{j} and \hat{k} and k are unit vectors.
- 19. Find the eigen values and eigen vectors for the matrix $\begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$.

20. Find the Fourier series of the function with period 2π defined as $f(x) = \begin{cases} x + \pi, & 0 \le x \le \pi \\ -x - \pi, & -\pi \le x < 0 \end{cases}$

21. (i) Find the Lagrange interpolating polynomial for

Х	1	2	3	5
F(x)	0	7	26	124

Hence find F(4).

(ii) Solve $\frac{\partial y}{\partial x} = y + x$ with y(0) = 1 for the step size h=0.2 to find y(0.2) and y(0.4)

22. Solve the following equations by Gauss-Siedel iteration method

4x + 2y + z = 14 x + 5y - z = 10x + y + 8z = 20.

\$\$\$\$\$\$\$