Date: 2	20-04-2	016	De	ept. No.					Max. : 100 Marks
Time: ()9:00-1	2:00						-	
					PART	$-\mathbf{A}$			
Answer AI	LL quest	tions							(10 x 2 = 20 Marks)
1. Find th	e real ar	nd imag	inary par	t of $\frac{1-i}{2+i}$.					
2. Check	whether	f(z) =	Re z + Im	z is ana	lytic or n	ot.			
3. Show th	hat∫ <i>f</i> (z)dz is ir	depende	nt of pat	h followe	ed if $f(z)$) in anal	ytic.	
4 Evoluo	c -i dz								
	$-i\overline{z}$	e •e	4 (14)	-7kt			du 7	$\partial^2 u$	
5. Find th	e value	of c if u	(x,t) = e	-2 ^{kt} cos	Bx is a so	lution of	$\frac{\partial t}{\partial t} = c^2$	$\overline{\partial^2 x}$.	
5. Write d 7 Define i	iown the inverse l	e two all Fourier	nensional transform	l wave eo n of a fui	luations. action				
8. State co	onvoluti	on theor	em.						
. Give th	e formu	la for fo	rward di	fference	operator	and shif	ft operate	or.	
10. Using T	rapezoi	dal rule	, Evaluat	$e_{0}^{-1}f(x)$	dx				
	X	0	0.25	0.5	50	0.75	1.00		
	f(x)	1.000	0.800	0.6	67	0.571	0.500		
	POUD				PART	– B			
Answer an	y four	questio	ons						$(4 \times 7.5 = 30 \text{ Marks})$
11. Show th	hat $(a) \cos x$	z = cos x	cosh v —	i sinv	sinhv				
	(b) sinh	$z = \sin x$	hx cosy -	+ i cosh x	sin y				
12. Using C	Cauchy's	s integra	l formula	ı, evalua	te $\frac{1}{c} \frac{\sin \theta}{1 + t}$	$\frac{z}{\pi \sqrt{4}} dz$ w	here C is	the circle	z = 2.
13 Derive	the wav	e equati	on for a v	ihrating	(2	2)			
Derive	the wave	c cquan		ioi atting					
14. Find th	e Fourie	er cosino	e t <mark>rans</mark> for	m of e^{-i}	^{kx} where	k > 0.			
15 Find th	na valua	ofus	t x=0.23	from th	o follow	ing tabl	o using	Nowton's	forward internalation
formula	a value	orya	a x=0.25	ii oin tu		ing tabl	t using 1		iorward micripolation
		at	0.20	0.22	0.24	0.26	0.28	0.30	
		*		4 ((00			1 7024	1 7139	
		3	1.6596	1.6698	1.6804	1.6912	1.7024	1.7107	
		14 100000							
16. Find th	e value o	of y(0.4)	for $y' =$	$1 + y^2$,	y(0) = 1,	$h = 0.1 \mathrm{u}$	ising Eul	ler's metho	od.
									1

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FOURTH SEMESTER - APRIL 2016

PH 4504/PH 4502/PH 6604 - MATHEMATICAL PHYSICS

- 2. Check whether
- 3. Show that $\int f(z)$

- 6. Write down the
- 7. Define inverse I
- 8. State convolutio
- 9. Give the formul
- 10. Using Trapezoi

x	0	0.25	0.50	0.75	1.00
f(x)	1.000	0.800	0.667	0.571	0.500

- $(a) \cos z$
- (b) sinh

Answer any FOUR questions:

(4 x 12.5 = 50 Marks)

(7.5+5)

- 17. Verify that $u = x^3 3xy^2$ is harmonic. Find a harmonic conjugate function v and hence find the analytic function f(z). (5+5+2.5)
- 18. (a) State and prove Cauchy's integral theorem.

(b) Evaluate
$$\sum_{z=1}^{z^2+4} \frac{dz}{dz}$$
 in counter clockwise where C: $|z-1|=2$.

- 19. Derive the D'Alembert's solution for the wave equation.
- **20. (a)** If F(s) is the Fourier transform of f(t), show that $F\{t f(t)\} = -iF'(s)$.
 - (b) A semi-infinite solid x > 0 is initially at temperature zero. At time t=0, a constant temperature u_0 is applied and maintained at the face x = 0. Find the temperature at any point of the solid and at any time t > 0. (6+6.5)
- 21. Deduce Lagrange interpolation formula for unequal intervals and using it find y(10) from the following table:

X	5	6	9	11
У	12	13	14	16

22. (a) Derive Cauchy-Riemann equations for a function f(z) to be analytic. (6.5+6)
(b) Find the real and imaginary parts of exp (z²). (5.0)

\$\$\$\$\$\$\$