B.Sc. DEGREE EXAMINATION - PHYSICS

FOURTH SEMESTER - APRIL 2016
PH 4504/PH 4502/PH 6604 - MATHEMATICAL PHYSICS

Date: 20-04-2016
Time: 09:00-12:00
Dept. No. \square Max. : 100 Marks
PART - A

Answer ALL questions

1. Find the real and imaginary part of $\frac{1-i}{2+i}$.
2. Check whether $f(z)=\operatorname{Re} z+\operatorname{Im} z$ is analytic or not.
3. Show that $\int f(z) d z$ is independent of path followed if $f(z)$ in analytic.
4. Evaluate $\int_{-i}^{i} \frac{d z}{z}$.
5. Find the value of \mathbf{c} if $u(x, t)=e^{-2 k t} \cos 8 x$ is a solution of $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial^{2} x}$.
6. Write down the two dimensional wave equations.
7. Define inverse Fourier transform of a function.
8. State convolution theorem.
9. Give the formula for forward difference operator and shift operator.
10. Using Trapezoidal rule, Evaluate $\int_{0}^{1} f(x) d x$

\mathbf{x}	0	0.25	0.50	0.75	1.00
$\mathbf{f}(\mathbf{x})$	1.000	0.800	0.667	0.571	0.500

PART - B

Answer any FOUR questions
11. Show that
(a) $\cos z=\cos x \cosh y-i \sin x \sinh y$
(b) $\sinh z=\sinh x \cos y+i \cosh x \sin y$
12. Using Cauchy's integral formula, evaluate $\int_{C} \frac{\sin z}{\left(z-\frac{i \pi}{2}\right)^{4}} d z$ where \mathbf{C} is the circle $|z|=2$.
13. Derive the wave equation for a vibrating string,
14. Find the Fourier cosine transform of $e^{-k x}$ where $k>0$.
15. Find the value of y at $x=0.23$ from the following table using Newton's forward interpolation formula

ant	0.20	0.22	0.24	0.26	0.28	0.30
	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

16. Find the value of $y(0.4)$ for $y^{\prime}=1+y^{2}, y(0)=1, h=0.1$ using Euler's method.
17. Verify that $u=x^{3}-3 x y^{2}$ is harmonic. Find a harmonic conjugate function v and hence find the analytic function $f(z)$.
18. (a) State and prove Cauchy's integral theorem.
(b) Evaluate $\oint_{C} \frac{z^{2}+4 d z}{z^{2}-4}$ in counter clockwise where $\mathbf{C}:|\mathbf{z}-\mathbf{1}|=\mathbf{2}$.
19. Derive the D'Alembert's solution for the wave equation.
20. (a) If $F(s)$ is the Fourier transform of $f(t)$, show that $\mathrm{F}\{\mathrm{tf}(\mathrm{t})\}=-\mathrm{i} \mathrm{F}^{\prime}(\mathrm{s})$.
(b) A semi-infinite solid $x>0$ is initially at temperature zero. At time $t=0$, a constant temperature u_{0} is applied and maintained at the face $x=0$. Find the temperature at any point of the solid and at any time $t>0$.
21. Deduce Lagrange interpolation formula for unequal intervals and using it find $y(10)$ from the following table:

x	5	6	9	11
y	12	13	14	16

22. (a) Derive Cauchy-Riemann equations for a function $f(z)$ to be analytic.
(b) Find the real and imaginary parts of $\exp \left(z^{2}\right)$.
