LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION - PHYSICS

THIRDSEMESTER – APRIL 2018

16PPH3MC02/PH3815-SPECTROSCOPY

Date: 26-04-2018 Dept. No. Max.: 100 Marks Time: 09:00-12:00 PART A

 $(10 \times 2 = 20)$

 $(4 \times 7.5 = 30)$

Answer ALL questions

- 1. Explain microwave active and microwave inactive molecules with an example for each.
- 2. The bond length of HF molecule is 0.0927 nm. What is the moment of inertia of the HF molecule?
- 3. How many normal modes of vibration are possible for (a) H_2O (b) HCl (c) C_6H_6 (d) OCS?
- 4. State the rule of mutual exclusion.
- 5. What is pre-dissociation?
- 6. What is the energy of a wave of wavelength 12,500 Å?
- 7. State the advantages of TMS when recording NMR spectra.
- 8. An NMR signal for a compound is found to be 160 Hz downwards from TMS peak operating at 100 MHz. Calculate its chemical shift in ppm.
- 9. Write any two applications of SEM.
- 10. What is fluorescence spectroscopy?

PART B

Answer any FOUR questions

- 11. (a) Illustrate the effect of isotopic substitution on the pure rotational spectra of a diatomic molecule.
 - (b) The first rotational line of ${}^{12}C^{16}O$ is observed at 3.84235 cm⁻¹ and that of ${}^{13}C^{16}O$ at 3.673377 cm⁻¹
 - ¹. Calculate the atomic weight of ¹³C, assuming the mass of ¹⁶O to be 15.9949 amu.
- 12. (a) Outline briefly each section of an IR spectrometer.
 - (b) Calculate the frequency of NO molecule whose force constants is 1609 Nm⁻¹.
- 13. (a) Explain polarizability ellipsoid. On the basis of polarizability, outline the vibrational Raman effect of H₂O
 - (b) The first rotational Raman line of H_2 appears at 346 cm⁻¹ from the exciting line. Calculate the bond length of H₂ molecule.
- 14. State Franck-Condon principle and account for intensity of spectral lines.
- 15. Explain the chemical shift in NMR spectroscopy.
- 16. Outline the principle of photoelectron spectroscopy.

PART C

Answer any FOUR questions

$(4 \times 12.5 = 50)$

- 17. Explain with theory, the spectrum of linear diatomic molecules of rigid rotor type. Deduce the correction for non rigid type.
- 18. (a) Explain the vibration spectrum of a diatomic molecule. Deduce the effect of anharmonicity.
 (b) The fundamental and first overtone transitions of CO are centered at 2143.3 cm⁻¹ and 4260 cm⁻¹. Calculate the equilibrium oscillation frequency, the anharmonicity constant and force constant of the molecule.
- 19. State the principle of ESR. With necessary diagram, explain how it is used to characterize samples.
- 20. Using family tree method, explain how spectral splitting is taking place in NMR spectroscopy due to coupling of other nuclei with suitable examples.
- 21. Outline the principles of Mossbauer spectroscopy. With a block diagram, explain the working of Mossbauer spectrometer.
- 22. Explain the principle, working and applications of electron energy loss spectroscopy (EELS).

\$\$\$\$\$\$\$\$