LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION –**PHYSICS**

THIRD SEMESTER – APRIL 2018

16UPH3MC01– MATHEMATICAL PHYSICS

PART-A

Date: 03-05-2018 Time: 09:00-12:00 Dept. No.

Max.: 100 Marks

(10 X 2 = 20 marks)

Answer ALL questions:

- 1. Express $\frac{2-3i}{4-i}$ in the form of a+ib.
- 2. Verify that $f(z) = x^2 y^2 + 2ixy$ is analytic.
- 3. Define scalar point function.
- 4. Find m so that the vectors $2\hat{\imath} 4\hat{\jmath} + 5\hat{k}$; $\hat{\imath} m\hat{\jmath} + \hat{k}$ and $3\hat{\imath} + 2\hat{\jmath} 5\hat{k}$ are co-planar.
- 5. What do you mean by orthogonality of trigonometric system?
- 6. What is the fundamental period of $y = \sin x$?
- 7. Distinguish between ordinary and partial differential equation
- 8. Write down a homogenous first order partial differential equation in two variables.
- 9. Using Trapezoidal rule, evaluate $\int_0^2 y dx$ from the following data

X	0	0.5	1	1.5	2
Y	1.000	0.800	0.500	0.308	0.200

10. Given $\frac{dy}{dx} = -y$ with y = 1 at x = 0 find y (0.02) using Euler's method.

PART-B

(4 X 7.5 = 30 marks)

11. Derive Cauchy – Riemann equation.

Answer any FOUR questions:

- 12. A vector field is given by $\overline{A} = (x^2+xy^2) \hat{\imath} + (y^2+x^2y) \hat{\jmath}$ show that the field is irrotational and find the scalar potential.
- 13. Determine the Fourier series of the function on $f(x) = x + \pi$ if $-\pi < x < \pi$ with a period of 2 π .
- 14. Obtain the solution of the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ using the method of separation of variables
- 15. Obtain the Lagrange's interpolation polynomial of degree two for the following data:

(x,y): (0,0), (1,3), (2,9)

16. Use Green's theorem to evaluate $\int_{c} x^2 y \, dx + x^2 dy$ where, c is the boundary described counterclockwise of the triangle with vertices (0,0);(1,0);(1,1)

Answer any FOUR questions:

17. a) State and prove Cauchy's integral theorem.

b) Verify the integral theorem for $\oint_c z dz$, where c is a circle of radius 1.

18. Evaluate $\iint r^3 dr d\theta$, over the area bounded between the circles $r=2\cos\theta$ and $r=4\cos\theta$.

19. Find the Fourier sine integral for $f(x) = e^{-\beta x} (\beta > 0)$ hence show that $\frac{\pi}{2} e^{-\beta x} = \int_0^\infty \frac{\lambda \sin \lambda x}{\beta^2 + \lambda^2} d\lambda$.

20. Write a one dimensional heat equation and derive its general solution.

21. Derive Newton's forward interpolation formula.Use it to find the value of y at x=0.23 from the following table.

Х	0.20	0.22	0.24	0.26	0.28	0.30
У	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

22. Given that $f(x) = x + x^2$ for $-\pi < x < \pi$, find the Fourier series of f(x)
