Date: 03-05-2018
Time: 09:00-12:00

B.Sc.DEGREE EXAMINATION -PHYSICS
 THIRD SEMESTER - APRIL 2018

16UPH3MC01- MATHEMATICAL PHYSICS

\square

PART- A

Answer ALL questions:
($\mathbf{1 0} \times 2=20$ marks)

1. Express $\frac{2-3 i}{4-i}$ in the form of $\mathrm{a}+\mathrm{ib}$.
2. Verify that $f(z)=x^{2}-y^{2}+2 i x y$ is analytic.
3. Define scalar point function.
4. Find m so that the vectors $2 \hat{\imath}-4 \hat{\jmath}+5 \hat{k} ; \hat{\imath}-m \hat{\jmath}+\hat{k}$ and $3 \hat{\imath}+2 \hat{\jmath}-5 \hat{k}$ are co-planar.
5. What do you mean by orthogonality of trigonometric system?
6. What is the fundamental period of $y=\sin x$?
7. Distinguish between ordinary and partial differential equation
8. Write down a homogenous first order partial differential equation in two variables.
9. Using Trapezoidal rule, evaluate $\int_{0}^{2} y d x$ from the following data

X	0	0.5	1	1.5	2
Y	1.000	0.800	0.500	0.308	0.200

10. Given $\frac{d y}{d x}=-y$ with $y=1$ at $x=0$ find $y(0.02)$ using Euler's method.

PART- B

Answer any FOUR questions:

11. Derive Cauchy - Riemann equation.
12. A vector field is given by $\bar{A}=\left(\mathrm{x}^{2}+\mathrm{xy}^{2}\right) \hat{\imath}+\left(\mathrm{y}^{2}+\mathrm{x}^{2} \mathrm{y}\right) \hat{\jmath}$ show that the field is irrotational and find the scalar potential.
13. Determine the Fourier series of the function on $\mathrm{f}(\mathrm{x})=\mathrm{x}+\pi$ if $-\pi<\mathrm{x}<\pi$ with a period of 2π.
14. Obtain the solution of the wave equation $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$ using the method of separation of variables
15. Obtain the Lagrange's interpolation polynomial of degree two for the following data:
$(\mathrm{x}, \mathrm{y}):(0,0),(1,3),(2,9)$
16. Use Green's theorem to evaluate $\int_{C} x^{2} y d x+x^{2} d y$ where, c is the boundary described counterclockwise of the triangle with vertices $(0,0) ;(1,0) ;(1,1)$

PART - C

Answer any FOUR questions:
17. a) State and prove Cauchy's integral theorem.
b) Verify the integral theorem for $\oint_{c} z d z$, where c is a circle of radius 1 .
18. Evaluate $\iint r^{3} d r d \theta$, over the area bounded between the circles $r=2 \cos \theta$ and $r=4 \cos \theta$.
19. Find the Fourier sine integral for $f(x)=e^{-\beta x}(\beta>0)$ hence show that $\frac{\pi}{2} e^{-\beta x}=\int_{0}^{\infty} \frac{\lambda \sin \lambda x}{\beta^{2}+\lambda^{2}} d \lambda$.
20. Write a one dimensional heat equation and derive its general solution.
21. Derive Newton's forward interpolation formula. Use it to find the value of y at $x=0.23$ from the following table.

x	0.20	0.22	0.24	0.26	0.28	0.30
y	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

22. Given that $f(x)=x+x^{2}$ for $-\pi<x<\pi$, find the Fourier series of $f(x)$
