M.Sc.DEGREE EXAMINATION - PHYSICS

FIRSTSEMESTER - APRIL 2018
17/16PPH1MC04/PH 1820 - MATHEMATICAL PHYSICS - I

Date: 30-04-2018
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

PART - A

Answer ALL the Questions

1. Write the algorithm of Runge-Kutta method of solving differential equations.
2. Write down the expression associated with Euler's method.
3. Express $z=\frac{2+i}{1-i}$ in the form of $a+i b$.
4. State the condition for which the function is analytic.
5. Show that a $n x n$ real antisymmetric tensor has $\frac{n(n-1)}{2}$ independent elements.
6. Define norm of a vector a and show that $(c, \alpha a+\beta b)=\alpha(c, a)+\beta(c, b)$
7. Show that δ_{k}^{j}. $\delta_{j}^{i}=\delta_{k}^{i}$
8. Write the terms contained in the expression $G=g_{\mu \nu} x^{\mu} x^{\nu}$ for three dimensional space.
9. Define gamma function.
10. Sketch the graph for spherical Bessel's function.

PART-B

Answer any FOUR Questions
11. Solve $x^{3}+x^{2}+10 x-20=0$ using Regula Falsi method.
12. Evaluate $\int_{c} \frac{z^{2} d z}{(4 z+1)^{2}}$ where $c:|z|=14$ using Cauchy's residue theorem.
13. Show that scalar product of two vector spaces (a, b) satisfies Cauchy-Schwarz inequality.
14. i) Prove that $A_{i j} B^{i} C^{j}$ is an invariant, if B^{i} and C^{j} are contravariant vectors and $A_{i j}$ is a covariant tensor
ii) Prove that transformation of tensors form a group.
iii) Show that, if a tensor is symmetric with respect to two indices in any coordinate system, it will remain symmetric with respect to these two indices in any other coordinate system.
15. i) Evaluate $\int_{0}^{\pi / 2} \sin ^{7} \theta \sin ^{8} \theta d \theta$ using gamma and beta function.
ii) Show that $J_{-\frac{1}{2}}(x)=\left(\frac{2}{\pi x}\right)^{1 / 2} \cos x$
16. Derive any two recurrence relations of Bessel's function.

PART-C

Answer any Four questions
(4x12.5=50)
17. Apply Gauss-Seidal method to solve

$$
\begin{aligned}
& 5 x+2 y+z=12 \\
& x+4 y+2 z=15
\end{aligned}
$$

$x+2 y+5 z=20$ Correct up to decimal places, taking $x_{0}=y_{0}=z_{0}=0$.
18. Using contour integration show that $\int_{-\infty}^{+\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{3}}=\frac{\pi}{8}$
19. Diagonalize the matrix $A=\left|\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right|$
20. i) If $A^{i j}$ and $B^{i j}$ are two tensors, show that $A^{i j} B_{i j}=A_{i j} B^{i j}$
ii) Show that in a Cartesian coordinate system, the contravariant and covariant components of a vector are identical.
iii) Derive the components of Moment of inertia tensor.
21. Solve Legendre's differential equation by Frobenius power series method.
22. Solve by Gauss elimination method

$$
\begin{gathered}
6 x-y-z=19 \\
3 x+4 y+z=26 \\
x+2 y+6 z=22
\end{gathered}
$$

\$\$\$\$\$\$\$\$\$

