M.Sc.DEGREE EXAMINATION - PHYSICS

SECONDSEMESTER - APRIL 2018

17/16PPH2MC02- MATHEMATICAL PHYSICS II

Dept. No. \square Max. : 100 Marks

PART - A

Answer ALL the Questions

1. Prove the change of scale property of Laplace transforms
2. Find the Laplace transform of the functions i) $e^{a t} \sin b t$ ii) $e^{-a t} \cos h b t$
3. Write the expression for Fourier cosine transform.
4. Form differential equations for a circle defined by $x^{2}+y^{2}=a^{2}$
5. Obtain the associated Laguerrepolynomials $L_{2}^{1}(x), L_{2}^{2}(x)$.
6. Show that $H_{2 n}(0)=\frac{(-1)^{n}(2 n)!}{n!}$ where H stands for Hermite polynomials
7. Prove that every subgroup of an abelian group is abelian.
8. Show that if a group G contains an element ' a ' such that every element of G is of the form a^{k} for some integer k , then G is cyclic group.
9. Write the recurrence relation for binomial distribution.
10. Write a note on student's t - distributions.

PART - B

Answer any FOUR Questions

11. Find the Laplace transform of the square-wave function of period 'a' defined by
$f(x)=\left\{\begin{array}{c}1, \text { when } 0<t<\frac{a}{2} \\ -1, \quad \text { when } \frac{a}{2}<t<a\end{array}\right.$
12. Solve the differential equation $\frac{d y}{d t}+y=3 e^{2 t}, y(0)=0$
13. Find the inverse Fourier transform of $F(s)=e^{-|s| y}$
14. Show that Hermite polynomials satisfy its own differential equation
15. Form matrix representation of the operations $E, \sigma_{x y}, \sigma_{y z}, \sigma_{x z}$
16. If the probability that an individual suffers a bad reaction from injection is 0.001 determine that out of 2000 individuals a) Exactly 3 b) more than 2 individuals c) None d) More than one individual suffer in a bad reaction.

PART - C

Answer any FOUR Questions

17. Using convolution theorem evaluate $L^{-1}\left[\frac{1}{s\left(s^{2}+4\right)}\right]$
18. Solve the heat flow equation $\frac{\partial \theta}{\partial t}=c^{2} \frac{\partial^{2} \theta}{\partial x^{2}}, t>0$ to determine the temperature $\theta(x, t)$ if the initial temperature of the infinite bar is given by $\theta(x, t)=\left\{\begin{array}{c}\theta_{0}, \text { for }|x|<a \\ 0, \text { for }|x|>a\end{array}\right.$
19. Prove that $L_{n+1}(x)=(2 n+1-x) L_{n}(x)-n^{2} L_{n-1}(x)$ where L stands for Laguerre polynomials.
20. List the symmetry elements for $C_{3 V}$ point group, obtain group multiplication table, classes and form the character table
21. a) In a certain factory producing cycle tyres, there is a small chance of 1 in 500 tyres to be defective. The tyres are supplied in lots of 10 , Using Poisson distribution, calculate the approximate number of lots containing no defective, one defective and two defective tyres respectively in a consignment of 10,000 lots.
b) A car hire firm has two cars which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the number of days in a year on which i) car is not used ii) the number of days in a year on which some demand is refused.
c) A manufacturer knows that the razor blades he makes contain on an average of 0.5% are defective. He packs them in packets of 5. What is the probability that a packet picked at random will contain 3 or more faulty blades?
22. a) A function $f(x)$ is defined as follows $f(x)=\left\{\begin{array}{cl}0, & x<2 \\ \frac{1}{18}(2 x+3), & 2 \leq x \leq 4 \\ 0, & x>4\end{array}\right.$ show that it is a probability density function.
b) A manufacturer of envelopes knows that the weight of the envelope is normally distributed with mean 1.9 gm and variance 0.01 gm . Find how many envelopes weighing i) 2 gm or more, ii) 2.1 gm or more, can be expected in a given packet of 1000 envelopes. [Given: if t is the normal variable, then $\varphi(0 \leq t \leq 1)=0.3413$ and $\varphi(0 \leq t \leq 2)=0.4772$]
