LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc.DEGREE EXAMINATION -**PHYSICS**

SECOND SEMESTER - APRIL 2018

		
LUCEAT LUX YESTRA	17/16UPH2MC01- MECHANI	ics
Date: 24-04-2018 Time: 01:00-04:00	Dept. No.	Max. : 100 Marks
Answer ALL Questions	Part – A	$(10 \times 2 = 20 \text{ marks})$
1. State Newton's first law	of motion.	
2. What is friction? Define	co-efficient of friction.	
3. What are conservative a	nd non-conservative forces?	
4. Define electric potential	and give its unit.	
5. What is equation of mot	ion?	
6. Define torque. What wil	l happen when torque acting on a rotatin	g body becomes zero?
7. What are the salient prop	perties of simple harmonic motion?	
8. How do we define the po	osition of stable equilibrium?	
9. What is relativistic aberr	ration of light?	
10. A rod 1 m long is movin	ng along its length with a velocity of 0.60	c. Calculate its length as it appears to
an observer (a) on the ea	arth and (b) moving with the rod itself.	
	Part – B	
Answer ANY FOUR Question		$(4 \times 7.5 = 30 \text{ marks})$
11. Discuss the motion of	a particle of charge 'q', mass 'm' and	velocity 'v' in a magnetic field of
intensity 'B' if vmakes a	an angle θ with B .	
12. (a) State and prove work	k-energy theorem for a particle.	(5)
(b) A force, $F = (10 + 10)$	0.50 x) acts on a particle in the x direc	etion, where F is in newton and x in
meter. Find the work do	ne by this force during a displacement fr	x = 0 to x = 2.0 m.
		(2.5)
13. State and prove (a) perpe	endicular axes theorem for a plane lamin	na (3.5)
(b) para	llel axes theorem	(4)

14. (a) Determine the period of oscillation of a compound pendulum.

(6)

(b) Also show that the centre of suspension and centre of oscillation are interchangeable	e.		
(1.5))		
15. Derive Lorentz transformation equations.			
16. (a) A bomber flies along a horizontal line at an altitude of 490 m with a velocity of 100ms ⁻¹ . Find at			
what horizontal distance before passing over a target on the ground, a bomb should be	dropped so as		
to hit the target. (3)			
(b) A gun fires a bullet with a velocity of 200 ms ⁻¹ at an angle of 40° with the ground. Find the			
velocity and position of the bullet after 20s. Also find the range and the time required f	or the bullet to		
return to ground. (4.5))		
Part – C			
Answer ANY FOUR Questions (4 x 12.5 =	50 marks)		
17. (a) Discuss the general motion of a charged particle in a constant electric field.	(7.5)		
(b) Show that the charged particle follows a parabolic path in transverse electric field.	(5)		
18. (a) Explain in detail the phenomena of elastic collision of two particles.	(10)		
(b) A ball of mass m_1 moving with velocity u_1 strikes another ball of mass m_2 which is	s stationary. If		
the collision is elastic, calculate the fraction of the kinetic energy transferred to the second ball.			
	(2.5)		
19. (a) Obtain the expression for acceleration and kinetic energy of a body rolling dov	vn an inclined		
plane without slipping.	(7.5)		
(b) A solid cylinder radius 0.04m and mass 0.25kg rolls down an inclined plane with			
Sin $\theta = 0.1$. Find the acceleration and the total energy of the cylinder after 5 seconds.	(5)		
20. State and prove Kepler's laws of planetary motion.			
21. Describe Michelson-Moreley experiment and discuss the implications of the negative result.			
22. (a) State and prove the law of conservation of angular momentum.	(5)		
(b) Obtain the expression for the distance of closest approach of proton to a nucleus.	(7.5)		
