LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc.DEGREE EXAMINATION -PHYSICS

SECOND SEMESTER - APRIL 2018
3PH 2500 / PH 2501 / PH 2503- MECHANICS \& SOUND / MECHANICS

Dept. No. \square Max. : 100 Marks

PART - A
Answer ALL questions:
(10x2=20 Marks)

1. What is aBiflar pendulum and what are the types of it?
2. Determine the angular momentum of a mass 0.5 kg , whirled in a circle at the end of a string 0.4 m long, the other end of which is held in the hand. The number of revolutions/ sec. is 40 .
3. Define centre of gravity.
4. The resultant of two parallel forces are $100 \mathrm{~N} \& 30 \mathrm{~N}$, when acting in the same and opposite directions, respectively Find the individual forver?
5. State Torricelli's theorem.
6. A pitot tube is fixed in a main of diameter 0.15 m and the difference of pressure indicated by the gauge is 0.04 m of water column. Find the volume passing through the main in a minute.
7. What are generalized coordinates?
8. State the principle of virtual work.
9. Define a frame of reference.
10. State the postulates of special theory of relativity.

PART - B

Answer any FOUR questions:

(4x7.5=30 Marks)
11. a) Obtain an expression for the period of oscillation of a Torsion pendulum.
b) A metal disc of 0.1 m radius and mass 1 kg is suspended in a horizontal plane by a vertical wire attached to its centre. If the diameter, length of the wire are $10^{-3} \mathrm{~m}$, 1 m respectively and the period of oscillation of the disc is 5 sec , find the rigidity modulus of the wire?
(5+2.5)
12. a) Define i) metacentreand ii) metacentric height.
b) Explain how the metacentric height of a ship is determined experimentally.
13. Explain the principle and working of venturimeter.
14. a) What is meant by configuration of space?
b) How this concept is used to describe the motion of a system of particles?
$(3+4.5)$
15. Derive an expression for the addition of velocities using Lorentz transformation.
PART - C

Answer any FOUR questions:
(4x 12.5=50 Marks)
16. Explain how ' g ' can be determined using compound pendulum.
17. Derive expressions for the position of the Centre of Gravity of i) a solid cone and ii) a solid tetrahedron.

18 a) State and prove Bernoulli's theorem.
b) Discus any two applications of the theorem.
19. a) State and explain D'Alembert's principle.
b) By applying Lagrange's equation of motion to the Atwood's machine, find the acceleration of the system.
(4+8.5)
20. Derive Lorentz transformation equations, stating the assumptions mode.

