LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034
M.Sc.DEGREE EXAMINATION - PHYSICS

SECONDSEMESTER - APRIL 2018
PH 2812- MATHEMATICAL PHYSICS
\square Max. : 100 Marks
Time: 01:00-04:00

Part - A

Answer ALL questions (10 $\times 2=20$)

1. Check whether $f(z)=\operatorname{Re}\left(z^{2}\right)$ is analytic or not.
2. State Taylor's theorem.
3. Define Dirac Delta function. What is its Laplace transformation?
4. State convolution theorem.
5. Find $\mathrm{L}\left\{e^{a t} \sin b t\right\}$.
6. Define inverse Fourier cosine and sine transformation.
7. Write the orthonormal property of Legendre polynomials.
8. State the condition for which the differential equation is Sturm-Liouville type.
9. Distinguish between Abelian group from cyclic group.
10. What is homomorphism?

Part -B

Answer any FOUR questions

$$
(4 \times 7.5=30)
$$

11. State and prove Cauchy's theorem.
12. Solve the initial value problem $\frac{d^{2} y}{d t^{2}}+25 y=10 \cos t, y(0)=2, y^{\prime}(0)=0$ by the Laplace transform.
13. Solve two-dimensional wave equation.
14. Obtain Fourier expansion for the function, $\mathrm{f}(\mathrm{x})=\frac{1}{2}(\pi-\mathrm{x}), 0<x<2 \pi$.
15. Derive the recurrence relations (i) $\frac{d}{d x}\left[x^{n} J_{n}(x)\right]=x^{n} J_{n-1}(x)$ (ii) $\frac{d}{d x}\left[x^{n-1} J_{n}(x)\right]=-x^{-n} J_{n+1}(x)$
16. Develop transformation matrix for rotation operation. Predict the number of rotational and vibrational modes of linear molecule CO_{2}.

Part -C

Answer any FOUR questions
$(4 \times 12.5=50)$
17. (i) Find the Taylor's series to represent $\frac{z^{2}-1}{(z+2)(z+3)}$ when $|z|<2$.
(ii) Derive Cauchy-Riemann equation for a function to be analytic.
18. i) Evaluate $\int_{c} \frac{f(z)}{z-2} d z \mathrm{c}:|z|=5$.
(ii) $f(\mathrm{z})=u(\mathrm{x}, \mathrm{y})+\mathrm{i} v(\mathrm{x}, \mathrm{y})$ is an analytic function and $u(\mathrm{x}, \mathrm{y})=\frac{\sin 2 x}{\cosh 2 y+\cos 2 x}$ find $f(\mathrm{z})$.
19. Obtain the general solution of partial differential equation $\frac{\partial^{2} y}{\partial t^{2}}=a^{2} \frac{\partial^{2} y}{\partial x^{2}}$ with the boundary condition $\mathrm{y}(0, t)=0 ; y_{x}(L, t)=0 ; y(x, 0)=\mathrm{f}(\mathrm{x}), y_{t}(\mathrm{x}, 0)=0,|\mathrm{y}(\mathrm{x}, \mathrm{t})|<\mathrm{M}$.
20. Derive the orthogonality relation for Laguerre's polynomials.
21. (a) Obtain the transformation matrices of the symmetry elements i) for the axis of symmetry and ii) for the improper axis of symmetry
(b) Enumerate and explain the symmetry elements of $\mathrm{H}_{2} \mathrm{O}$ and NH_{3} molecules.
22. Solve Legendre's differential equation by Frobenius power series method.

\$\$\$\$\$\$\$\$

