LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

Sc. DEGREE EXAMINATION - ADVANCED ZOOLOGY AND PLANT BIOLOGY

THIRDSEMESTER – APRIL 2018

PH 3206- PHYSICS FOR BIOLOGY

Date: 04-05-2018 Time: 01:00-04:00 Dept. No.

Max.: 100 Marks

PART - A

Answer **ALL** the Questions:

 $(10 \times 2 = 20)$

- 1. Write the significance of viscosity in view of biology.
- 2. Arrange the following liquids in the order of increasing coefficient ofviscosity: coconut oil, water, castor oil, honey.
- 3. What is stimulated emission?
- 4. Write any two applications of laser.
- 5. The refractive index of a medium is 1.5 and a light ray passes from air into this medium. What will be the speed of light in the medium? (Speed of light in air is $3x10^8$ m/s.)
- 6. Write few uses of fluorescent microscope.
- 7. Define curie.
- 8. Write any two uses of radio isotopes.
- 9. What is a transducer?
- 10. What is a needle electrode?

PART - B

Answer any **FOUR** questions

 $(4 \times 7.5 = 30)$

- 11. Define surface tension. Explain molecular theory of surface tension.
- 12. Explain briefly the construction and working of He-Ne laser withneat schematic and energy level diagrams.
- 13. Describe the optical principle and working of ultra violet microscope.
- 14. Describe the construction and working of Ruby laser with necessary diagrams.
- 15. Explain the construction and working of GM counter.
- 16. Write a note about various forms of surface electrodes.

PART - C

Answer any **FOUR** questions

 $(4 \times 12.5 = 50)$

- 17. Write Stoke's formula for viscous force. Explain with necessary theory, the Stokes method to find the coefficient of viscosity of a liquid.
- 18. Explain the principle of operation of Nd-YAG laser with help of neat schematic and energy level diagrams.
- 19. Describe the optical principle, construction and working of a compound microscope.

 20. Draw the schematic diagram and describe the optical principle of (i) Transmission Electron Microscope (TEM) and (ii) Scanning Electron Microscope (SEM). 21. Using the law of radioactive disintegration, derive expressions for half-life and mean-life of a radioactive element. 22. Describe the working of a pressure transducer.
\$\$\$\$\$\$\$