LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034							
B.Sc.DEGREE EXAMINATION – PHYSICS							
¥ _	THIRD SEMESTER –	THIRD SEMESTER – APRIL 2018					
PH 3506- MATHEMATICAL PHYSICS							
	05-05-2018 Dept. No.		Max. : 100 Marks				
Part –A Answer all questions			$(10 \times 2 = 20 \text{marks})$				
1. Define an analytic function							
2. Separate the following into real and imaginary part of sin $(x+iy)$							
3. Find the unit normal to the surface $x^2+y^2=z$ at point (1,2,5)							
4. State Stoke's theorem.							
5. Define Euler coefficients for even half range expansion							
6. Using Laplace integral, evaluate $\int_0^\infty \frac{\cos \omega \ d\omega}{1+\omega^2}$							
7.	7. What is a triangular matrix? Give an example						
8.	8. Determine the rank of a matrix $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1 \end{bmatrix}$						
9. Express Gauss' integral formula and give its importance.							
10. Write down the difference operator for $f(x)$ by 'h'.							
Part- B							
Answe	er any four questions.		$(4 \times 7.5 = 30 \text{ marks})$				
11. (a) Show that $ Z - i ^2 = 1$ describes a circle centered at the (0,i) with radius 1.							
(b) Simplify (1+i) (2+i) and locate it in the complex plane.							
12. Using Green's theorem, evaluate $\int_c (x^2 y dx + x^2 dy)$ where C is boundary described counter –							
clock wise of the triangle with vertices (0,0) (1,0), (1,1).							
13. Obtain a Fourier expression for $f(x) = x$ for $-\pi < x < \pi$.							
14.	. Verify Cayley – Hamilton theorem for the matrix $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$	2 -1 0	$\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ and find its inverse.				

15. Using Lagrange's interpolation formula, find the value of Y when X=10 from the following data.

X	5	6	9	11
Y	12	13	14	16

16. Use Cauchy's integral theorem to evaluate the integral $\oint_C \frac{dz}{z^2+1}$ where C: |z+i| = 1 in the counter clockwise direction.

Part –C

Answer any four questions.

$(4 \times 12.5 = 50 \text{ marks})$

- 17. Establish that the real and complex part of an analytic function satisfies the Laplace equation.
- 18. (a) Prove that ∇ . $\nabla \times F = 0$, where F is a three dimensional vector in Cartesian coordinates.

(b) Using Gauss –divergence theorem, evaluate $\iint_S (x^3 dy dz + y^3 dz dx + z^3 dx dy)$ where S is the surface of the sphere $x^2 + y^2 + z^2 = 4$.

19. write down the functional form of a square wave of period 2π and obtain its Fourier series.

20. Determine the eigen values of A = $\begin{bmatrix} 2 & 0 & -2 \\ 0 & 0 & -2 \\ -2 & -2 & 1 \end{bmatrix}$ and show that matrix A satisfies its own

characteristic equation.

- 21. Calculate the approximate value of $\int_{-3}^{+3} x^4 dx$ by Simpon's $\frac{1}{3}$ rule. Compare it with the exact value and the value obtained by Trapezoidal.
- 22. (a) Find the directional derivate of $g = (x^2 + y^2 + z^2)^{-1/2}$ at (4,2,-4) in the direction of (1,2,-2).
 - (b) If $\vec{U} = yz \,\hat{\imath} + zx \,\hat{\jmath} + xy \,\hat{k}$ and f = xyz, find curl $(f\vec{U})$
