LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION -PHYSICS

SIXTH SEMESTER - APRIL 2018

PH 6610- SOLID STATE PHYSICS

Date: 10-05-2018	Dept. No.	Max. : 100 Marks
Time: 01:00-04:00		

PART-A

Answer ALL Questions

(10x2=20)

- 1. What is a point group?
- 2. Copper has fcc structure and its atomic radius is 1.273 Å.Find the lattice parameter.
- 3. State Bragg's law of X-ray diffraction.
- 4. Mention any two advantages of neutron diffraction technique.
- 5. Define specific molar heat capacity. Give its unit.
- 6. The Debye temperature of Diamond is 2230 K. Calculate the highest possible vibrational frequency of it.
- 7. State Wiedemann- Franz law.
- 8. What is Hall field? Give the expression for Hall coefficient.
- 9. What is Meissner effect?
- 10. What is a vortex state?

PART-B

Answer ANY **FOUR** Questions

(4x7.5=30)

- 11. Name the seven types of crystal systems together with the relation between lattice parameters and the angles between the axes of a unit cell.
- 12. What are Laue equations of X-ray diffraction? Explain the significance of these equations.
- 13. Obtain an expression for the coefficient of thermal conductivity of a solid.
- 14. Derive an expression for the electrical conductivity of a metal on the basis of Sommerfeld theory.
- 15. Discuss a.c. Josephson's effect. Show that current oscillates with frequency, $\omega = \frac{2eV}{h}$.(1.5+6)

<u>PART-C</u>	
Answer ANY FOURQuestions: $(4x12.5 = 50)$	
16.i) What are Miller indices?	(1.5)
ii) Explain the stepwise procedure for finding Miller indices of a given plane.	(4)
iii) In an orthorhombic crystal, a lattice plane makes intercepts of lengths 3a, -2b and 3	3c/2 along three
axes. Deduce the Miller indices of the plane if a, b, c are primitive vectors of the unit cell.	
	(5)
iv) Draw the plane with the indices (010) in a cubic unit cell.	(2)
17. i) Explain the powder crystal method of studying crystal structure.	(9)
ii) A beam of X-rays with wavelength 0.8420 Å is incident on NaCl crystal. Calculate to	he interplanar
spacing of NaCl crystal if the first order Bragg's reflection takes place at a glancing ang	le of 8°35'.
	(3.5)
18. Derive an expression for the specific heat capacity of solids based on Einstein theory.	Explain its
behavior in high and low temperature regions.	(8.5+4)
19. Derive an expression for the Fermi energy of a free electron gas in 3 dimensions and d	educe an
expression for density of states.	(10+2.5)
20. i) What is superconductivity?	
ii) distinguish between type I and type II superconductor.	(5)
iii) Briefly outline BCS theory of superconductivity.	(6)

_