LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - PHYSICS

SECOND SEMESTER - APRIL 2022
PPH 2503 - QUANTUM MECHANICS - I

Date: 20-06-2022
Dept. No.

Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

PART - A

Q. No

Answer ALL Questions

($10 \times 2=20$ Marks $)$
If the wave function of a particle in a state is given by
$\psi(x)=\left(\frac{1}{\pi}\right)^{1 / 4} e^{\left(-\frac{x^{2}}{2}\right)}$ in the limit $-\infty \leq x \leq+\infty \quad$, then find $\left.<x^{2}\right\rangle$
2 With example, explain linear operators.
If $\left|\Psi_{1}\right\rangle=\frac{1}{\sqrt{\pi}} \sin x$ and $\left|\Psi_{2}\right\rangle=\frac{1}{\sqrt{\pi}} \sin 2 x$, then show that they form an ortho-normal basis set in the limit $-\pi \leq x \leq \pi$.

Represent $\mid \psi>,\langle\psi| \psi>$ and $|\psi><\psi|$ in terms of the expansion coefficients.
5 Write down the Hamiltonian of the helium atom.
Evaluate $<1\left|x^{4}\right| 1>$ for a one dimensional harmonic oscillator by expressing x^{4} in terms of ladder operators.

Write down the complete eigen kets before and after addition of angular momentum $\mathrm{j}_{1}=1 \& \mathrm{j}_{2}=1$.

10 What is Ramsaur-Townsend effect?

PART - B

Answer any FOUR Questions
(4 x 7.5 = 30 Marks)
11 Derive the equations of motion in the Schrodinger picture.
Establish any four properties of operators that remain invariant under unitary transformation.
Evaluate the commutation relations of J_{+}with $\mathrm{J}^{2}, \mathrm{~J}_{z}, \mathrm{~J}_{\mathrm{x}}, \mathrm{J}_{\mathrm{y}}$.
Describe the Greens' function technique and hence obtain an expression for differential scattering cross-section.

15 State and prove the general variational principle for the ground state.
(ii) Any two eigenfunctions of a Hermitian operator belonging to different eigenvalues are orthogonal.

PART - C

17 Solve for the eigen values of the harmonic oscillator using the Heisenberg matrix method.
18 State and prove any five properties of Pauli spin matrices.
19 Discuss Stark effect with reference to $\mathrm{n}=2$ state of the hydrogen atom.
20 From phase shift analysis of scattering by an attractive square well potential, derive Breit-Wigner formula for resonance scattering.
21 Establish the general uncertainty relation between any two dynamical variables.
22 Explain quantum mechanical tunneling across a potential barrier.

