LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

SECOND SEMESTER - APRIL 2022
UPH 2502 - MATHEMATICAL PHYSICS - I

Date: 18-06-2022
Dept. No. \square Max. : 100 Marks
Time: 01:00 PM - 04:00 PM

PART - A

Q. No.

Answer ALL Questions
(10×2 = 20 Marks $)$
1 Express in polar form: $1-\sqrt{2}+i$
2 Simplify the following: (a) i^{49} and (b) i^{178}.
3 Test if the function $\sin z$ is analytic.
4 Prove that $(\cos h x-\sin h x)^{n}=\cosh n x-\sin h n x$
5 Find the area of the parallelogram whose adjacent side are $2 i-4 j+k$ and $i-6 j-4 k$.
6 Determine λ such that $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}, \vec{b}=2 \hat{\imath}-4 \hat{k}$ and $\vec{c}=\hat{\imath}+\lambda \hat{\jmath}+3 \hat{k}$ are coplanar.
7 Evaluate grad, if $\varphi=\log \left(x^{2}+y^{2}+z^{2}\right)$.
Find the torque of a force $7 \hat{i}-3 \hat{j}-5 \hat{k}$ about the origin which acts on a particle whose position vector is $\hat{\imath}+\hat{\jmath}-\hat{k}$.
9 Write Dirichlet's conditions.
10 What are odd and even functions?

PART - B

Answer any FOUR Questions
(4 x $7.5=30$ Marks $)$
11 Find the square root of the complex number $5+12 i$.
12 Determine whether $\frac{1}{z}$ is analytic or not?
13 Derive Cauchy's Integral formula.
Find the values of a, b, c so that the function $\vec{f}=(x+2 y+a z) \hat{\imath}+(b x-3 y-3 z) \hat{\jmath}+(4 x+c y+2 z) \hat{k}$ is irrotational.
15 Find the directional derivative of $\frac{1}{r}$ in the direction \vec{r} where $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$.
16 Find the Fourier series for the periodic function $f(x)=\left\{\begin{array}{cc}0, & -\pi<x<0 \\ x, & 0<x<\pi\end{array} \quad f(x+2 \pi)=f(x)\right.$.

> PART - C Answer any FOUR Questions

Evaluate the following integral using Cauchy's integral formula $\int_{c\left(\frac{z}{\left.z^{2}-3 z+2\right)}\right.} d z$ Where ' c ' is the circle $|z-2|=\frac{1}{2}$.
18 Find the complex number z is if $\arg (z+1)=\frac{\pi}{6}$ and $\arg (z-1)=\frac{2 \pi}{3}$.
State and Prove Cauchy's Integral Theorem.
If $\vec{u}=y z \hat{\imath}+z x \hat{\jmath}+x y \hat{k}$ and $f=x y z$ find $\operatorname{Curl}(f \vec{U})$.
Find the divergence and curl of $\vec{v}=(x y z) \hat{\imath}+\left(3 x^{2} y\right) \hat{\jmath}+\left(x z^{2}-y^{2} z\right) \hat{k}$ at $(2,-1,1)$.
Find the Fourier series to represent $f(x)=x \sin x$ for $0<x<2 \pi$.

