LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS
 SECOND SEMESTER - APRIL 2022

UPH 2502 - MATHEMATICAL PHYSICS - I
(21 BATCH ONLY)

Date: 18-06-2022
Dept. No. \square Max. : 100 Marks
Time: 01:00 PM - 04:00 PM

PART - A

Q. No.

Answer ALL Questions

1 Select the right Choice
(a)

The analytic function $\mathrm{f}(\mathrm{z})$ whose real part is $\mathrm{x}^{2}-\mathrm{y}^{2}$

$\mathbf{5} \times 1 \mathbf{y}$	Marks	
	K1	CO1

(a) z
(b) z^{2}
(c) z^{3}
(d) z^{-1}

The function $f(z)=\frac{z}{z^{2}-1}$ in the contour C given by $\mathrm{x}^{2}+\mathrm{y}^{2}=4$
(b)
(a) no pole
(b) a simple pole at $\mathrm{z}=+1$
(c) a simple pole at $\mathrm{z}=+1 \&-1$
(d) a simple pole at $\mathrm{z}=+\mathrm{i}$
(c)

The value of triple product $\vec{a} \cdot(\vec{a} \times \vec{b})$ is
(d)
(d) \vec{b}
(a) zero
(b) a simple pole $\mathrm{z}=2$
(c) \vec{a} div \vec{r} is
(b) 1
(c) 2
(d) 3

| (e) | The conditions imposed on function to be represented by Fourier series
 expansion is called
 (a) Parseval's condition | (b) Dirichlet's | (c) Euler's condition | (d) Demorgan |
| :--- | :--- | :--- | :--- | :--- |\quad K1 | CO1 |
| :--- |
| $\mathbf{2}$ |

Fill in the blanks

(a)	The value of i^{178} is	K1	CO1
(b)	If $\mathrm{z}=1-7 \mathrm{i}$ then the value of imaginary part is	K1	CO1
(c)	If vectors $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ are mutually perpendicular, then	K1	CO1
(d)	$\vec{\imath} . \vec{\imath}=\ldots \ldots \ldots \ldots$	K1	CO1
(e)	If the function $\mathrm{f}(\mathrm{x})$ is odd, then $\mathrm{f}(-\mathrm{x})$ is equal to	K1	CO1
3	Match the following Marks	$5 \times 1=5$	
(a)	Cauchy's integral theorem $\quad\|\vec{a} \times \vec{b}\|$	K2	CO1
(b)	C-R Equations 0	K2	CO1
(c)	Area of the parallelogram Analytic	K2	CO1
(d)	Condition for coplanar $\quad \int_{c(} f(z) d z=0$	K2	CO1
(e)	$\begin{array}{ll}\vec{k} \times \vec{k} & \vec{a} \vec{b} \vec{c}]=0\end{array}$	K2	CO1
4	True or False	$5 \times 1=5$ Marks	
(a)	Let $\mathrm{x}+\mathrm{iy}$ be a complex number and x - iy its complex conjugate.	K2	CO1
(b)	Let $1+\mathrm{i}$ be a complex number and its modulus 2 .	K2	CO1

(c)	Curl of the vector field is always scalar.	K2	CO1
(d)	Gradient of the vector field is always scalar.	K2	CO1
(e)	For fourier representation of a function $\mathrm{f}(\mathrm{x})$, the function must be periodic.	K2	CO1
SECTION - B			
Answer any TWO of the following		($2 \times 10=20$)	
5.	Show that the function e^{x} (cosy + isiny $)$ is an analytic function.	K3	CO 2
6.	State and Prove Cauchy's Integral Theorem.	K3	CO2
7.	Show that $\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{\imath}+(3 x z+2 x y) \hat{\jmath}+(3 x y-2 x z+2 z) \hat{k}$ is both solenoidal and irrotational.	K3	CO 2
8.	If $\vec{V}=\frac{x \hat{l}+y \hat{\jmath}+z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}$, find the values of $\operatorname{div} \vec{V}$.	K3	CO 2
SECTION - C			
Answer any TWO of the following		$\mathbf{(2 \times 1 0}=\mathbf{2 0})$	
9.	Prove that $U=x^{2}-y^{2}$ and $V=\frac{y}{x^{2}+y^{2}}$ are harmonic functions of (x,y), but are not Harmonic conjugates.	K4	CO3
10.	Derive Cauchy-Riemann equations for a function to be analytic	K4	CO3
11	Find the values of a, b, c so that the function $\vec{f}=(x+2 y+a z) \hat{\imath}+(b x-3 y-$ $3 z) \hat{\jmath}+(4 x+c y+2 z) \hat{k}$ is irrotational	K4	CO3
12	Find the Fourier series to represent $f(x)=\pi-x$ for $0<x<2 \pi$.	K4	CO3
SECTION - D			
Answer any ONE of the following		(1 x 20 = 20)	
13	(a) Evaluate $\int_{c\left(\frac{e^{z}}{z-1)(z-4)}\right.} d z$, Where ' c ' is the circle $\|z\|=2$ by using Cauchy's integral formula. (b) Determine whether $\frac{1}{2}$ is analytic or not?	K5	CO4
14	(a) Prove that $[\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$ (b) Find the directional derivative of $x^{2} y^{2} z^{2}$ at the point $(1,1,-1)$ in the direction of the tangent to the curve $x=e^{t}, y=\sin 2 t+1, z=1-\operatorname{cost}$ at $t=0$	K5	CO4
SECTION - E			
Answer any ONE of the following		(1 $\times 20=20)$	
15	Interpret the physical meaning of divergence and curl.	K6	CO5
16	An alternating current after passing through a rectifier has the form $\begin{aligned} i & =I \sin \theta \text { for } 0<\theta<\pi \\ & =0 \quad \text { for } \pi<\theta<2 \pi \end{aligned}$ find the Fourier series of the function	K6	CO5
@@@@@@@			

