LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

AUGENT LIK VESTRA

SECOND SEMESTER – APRIL 2022

UPH 2502 – MATHEMATICAL PHYSICS – I

(21 BATCH ONLY)

Date: 18-06-2022 Dept. Time: 01:00 PM - 04:00 PM

No.	
-----	--

Max. : 100 Marks

	PART – A					
Q. No. Answer ALL Questions						
1	Select the right Choice5 x	Select the right Choice5 x 1 = 5 Marks				
(a)	The analytic function $f(z)$ whose real part is x^2-y^2 (a) z (b) z^2 (c) z^3 (d) z^{-1}	K1	CO1			
(b)	The function $f(z) = \frac{z}{z^2 - 1}$ in the contour C given by $x^2 + y^2 = 4$ (a) no pole (b) a simple pole at $z = +1$ (c) a simple pole at $z = +1$ & -1 (d) a simple pole at $z = +i$	K1	CO1			
(c)	The value of triple product $\vec{a} \cdot (\vec{a} \times \vec{b})$ is (a) zero (b) a simple pole $z = 2$ (c) \vec{a} (d) \vec{b}	K1	CO1			
(d)	div \vec{r} is (a) zero (b) 1 (c) 2 (d) 3	K1	CO1			
(e)	The conditions imposed on function to be represented by Fourier series expansion is called(a) Parseval's condition (b) Dirichlet's (c) Euler's condition (d) Demorgan	K1	CO1			
2	Fill in the blanks5 x 1 = 5 Marks					
(a)	The value of i^{178} is	K1	CO1			
(b)	If $z = 1$ - 7i then the value of imaginary part is	K1	CO1			
(c)	If vectors \vec{a} and \vec{b} are mutually perpendicular, then	K1	CO1			
(d)	$\vec{\iota} \cdot \vec{\iota} = \dots$	K1	CO1			
(e)	If the function f(x) is odd, then f(-x) is equal to	K1	CO1			
3	Match the following Marks	5 2	x 1 = 5			
(a)	Cauchy's integral theorem $ \vec{a} \times \vec{b} $	K2	CO1			
(b)	C-R Equations 0	K2	CO1			
(c)	Area of the parallelogram Analytic	K2	CO1			
(d)	Condition for coplanar $\int_{c} f(z) dz = 0$	K2	CO1			
(e)	$\vec{k} \times \vec{k} \qquad \qquad$	K2	CO1			
4	True or False5 x 1	5 x 1 = 5 Marks				
(a)	Let $x + iy$ be a complex number and $x - iy$ its complex conjugate.	K2	CO1			
(b)	Let $1 + i$ be a complex number and its modulus 2.	K2	CO1			

(a)	Curl of the vector field is always scalar	VJ	COI	
(c)	Curl of the vector field is always scalar.	K2	CO1	
(d)	Gradient of the vector field is always scalar.	K2	CO1	
(e)	For fourier representation of a function $f(x)$, the function must be periodic.	K2	CO1	
	SECTION – B			
Answe	Answer any TWO of the following(2 x 10 = 20)			
5.	Show that the function $e^{x}(cosy + isiny)$ is an analytic function.	K3	CO2	
6.	State and Prove Cauchy's Integral Theorem.	K3	CO2	
7.	Show that $(y^2 - z^2 + 3yz - 2x)\hat{\imath} + (3xz + 2xy)\hat{\jmath} + (3xy - 2xz + 2z)\hat{k}$ is both solenoidal and irrotational.	K3	CO2	
8.	If $\vec{V} = \frac{x\hat{\imath} + y\hat{\jmath} + z\hat{k}}{\sqrt{x^2 + y^2 + z^2}}$, find the values of $div \vec{V}$.	K3	CO2	
	SECTION – C			
Answe	r any TWO of the following (2	2 x 10	= 20)	
9.	Prove that $U = x^2 - y^2$ and $V = \frac{y}{x^2 + y^2}$ are harmonic functions of (x, y), but are not Harmonic conjugates.	K4	CO3	
10.	Derive Cauchy-Riemann equations for a function to be analytic	K4	CO3	
11	Find the values of <i>a</i> , <i>b</i> , <i>c</i> so that the function $\vec{f} = (x + 2y + az)\hat{\imath} + (bx - 3y - 3z)\hat{\jmath} + (4x + cy + 2z)\hat{k}$ is irrotational	K4	CO3	
12	Find the Fourier series to represent $f(x) = \pi - x$ for $0 < x < 2\pi$.	K4	CO3	
	SECTION – D			
Answe	Answer any ONE of the following		$(1 \times 20 = 20)$	
13	(a) Evaluate $\int_{c(\overline{z-1})(z-4)} dz$, Where 'c' is the circle $ z = 2$ by using Cauchy's		CO4	
	(b) Determine whether $\frac{1}{z}$ is analytic or not?			
14	(a) Prove that $[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2 [\vec{a} \ \vec{b} \ \vec{c}]$ (b) Find the directional derivative of $x^2 y^2 z^2$ at the point (1,1, -1) in the direction of the tangent to the curve $x = e^t$, $y = sin2t + 1$, $z = 1 - cost$ at $t = 0$	K5	CO4	
	SECTION – E			
Answe	r any ONE of the following	$(1 \times 20 = 20)$		
15	Interpret the physical meaning of divergence and curl.	K6	CO5	
16	An alternating current after passing through a rectifier has the form $i = I \sin\theta \text{ for } 0 < \theta < \pi$ $= 0 \text{for } \pi < \theta < 2\pi$, find the Fourier series of the function	K6	CO5	
	@@@@@@@@			