LOYO	LA COLLEGE (AUTONOMOU	S), CHENNAI – 600 034	
1. CC 200	B.Sc. DEGREE EXAMINAT	ION – PHYSICS	
ş==	FIFTH SEMESTER – NOV	EMBER 2018	
LUCEAT LIK VESTRA	16UPH5MC01- QUANTUI	M MECHANICS	
Date: 25-10-2018 Time: 09:00-12:00	Dept. No.	Max. : 1	100 Marks
Answer ALL Questions (10x2=20)			
 Find the de Broglie wa kV. 	avelength associated with an electron	n subjected to a potential differe	nce of 1.25
2. Explain the terms 'way	ve velocity' and 'group velocity'?		
3. What is meant by ortho	onormal wave functions?		
4. Write an eigenvalue ec	quation, explaining the meaning of the	he symbols used.	
5. What do you mean by	tunneling?		
6. What are ladder operat	tors?		
7. Write down the eigenv	values of operators \hat{L}_z and \hat{L}^2 for the	eigenfunction $Y_{l,m}(\theta, \varphi)$.	
8. Write Pauli's spin mat	rices.		
9. Explain the term deger	neracy.		
10. Calculate the degree of	f degeneracy for 3D isotropic harmo	onic oscillator, for n=1. Write th	e possible
states that correspond	to it.		
Answer ANY FOUR Que	estions PART-B	(4X7.5=30))
11. What is Compton effect	ct? Derive an expression for the char	nge in the wave length of a phot	on scattered
by a stationary electron	n.		(2+5.5)
12. i) Use uncertainty principle to prove that the electrons cannot exist inside the nucleus.		(5)	
ii) Calculate the uncer	rtainty in position of an electron wei	ghing 9x10 ⁻²⁸ g and moving w	ith an
uncertainty in spee	ed of $3x10^9$ cm/sec.		(2.5)
13. State and explain the	fundamental postulates of quantum 1	mechanics.	

14. Derive energy eigenvalues and normalized wave functions for a particle in one dimensional box.

15. With necessary diagram, describe Stern-Gerlach experiment and give its importance in quantum				
mechanics.				
16. Set up Schrodinger wave equation for a rigid rotator. Obtain its eigenfun	ctions and eigenvalues.			
Answer ANY FOURQuestions :	(4x12.5 = 50)			
17.i) With a neat diagram, describe how Davisson and Germer's experiment proves the wave nature of				
moving electrons. (7.5)				
ii) In detail discuss Einstein's explanation of photoelectric effect.	(5)			
18. State and prove Ehrenfest's theorems.				
19.i)What is hermitian operator? Give an example for it. (2+0.5)				
ii) Show that a) Hermitian operators have real eigenvalues. b) two eigenfunctions of Hermitian				
operators, belonging to different eigenvalues, are orthogonal.	(3+3)			
iii) Show that the probability current density together with probability density satisfies the equation of				
continuity. (4	(4)			
20. Set up Schrodinger equation for a linear harmonic oscillator and solve it to obtain eigenvalue and				
eigenfunctions. Discuss the significance of zero point energy.				
21. Deduce the following commutation relation:				
i) $[\widehat{L_z}, \widehat{L_+}]$	(2)			
ii) $[\widehat{L_x}, \widehat{x}]$	(2)			
iii) $[\widehat{L_x}, \widehat{L_y}]$	(3.5)			
iv) $[\widehat{L^2}, \widehat{L_x}]$	(3)			
v) $[\widehat{L_+}, \widehat{L}]$	(2)			

22. Write the equation satisfied by the radial wavefunction for hydrogen atom and solve it to obtain the energy eigenvalues.
