LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

THIRD SEMESTER - NOVEMBER 2019
PH 3506 - MATHEMATICAL PHYSICS

Date: 29-10-2019
Time: 01:00-04:00

PART - A

Answer All questions:
(10 X $2=20$ Marks $)$

1. Express $\frac{1+2 i}{1-i}$ in the form of $f(z)=a+i b$
2. Locate $1+3 i$ and $1-7 i$ in the complex plane
3. When a vector to be called as irrotational?
4. State stokes theorem.
5. Determine the fundamental period of $\cos x$ and $\sin 2 x$
6. Define periodic function.
7. What is the trace of the matrix $\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1\end{array}\right)$
8. What is a normal matrix? Give an example.
9. Using Trapezoidal rule, evaluate $\int_{1}^{2} x^{2} d x$ with four ordinates
10. Write Simpsons rule $1 / 3^{\text {rd }}$ rule.

PART - B

Answer any Four questions:
11. Show that (a) $\cosh z=\cosh x \cos y+i \sinh x \sin y$
(b) $\sinh z=\sinh x \cos y+i \cosh x \sin y$.
12. Derive the Cauchy - Riemann conditions for a function to be analytic.
13. Find the Fourier Cosine series of $f(x)=1$ for $0 \leq x<T / 2$ and $f(x)=-1$ for $-T / 2 \leq x<0$
14. Verify Cayley - Hamilton theorem for the matrix $\left(\begin{array}{ccc}1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
15. Fit a straight line by method of least squares for the following data

X	0	1	2	3	4
Y	1	1.8	3.3	4.5	6.3

16. State and prove Green's theorem in the plane.
17. State and prove Cauchy's integral theorem.
18. State and prove Gauss divergence theorem. Using $\iiint \vec{\nabla} \times \vec{F} d V=\iint \overrightarrow{d S} \times \vec{F}$.
19. Find the Fourier series of the function with period 2π defined as $f(x)=f(x)=\left\{\begin{array}{c}x+\pi, 0 \leq x \leq \pi \\ -x-\pi, \\ -\pi \leq x<0 .\end{array}\right.$
20. Find the eigen values and eigen vectors of $\left(\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right)$
21. Find the solution to four decimals of the system
$27 x+6 y-z=85$
$6 x+15 y+2 z=72$
$x+y+54 z=110$ Using Gauss-Seidel method.
22. Using Lagrange's interpolation formula, Obtain the value for Y when $X=2$

X	1	3	7	10
Y	11	19	59	110

