LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2019
PPH 1501 - CLASSICAL MECHANICS

Date: 30-10-2019 \square Max. : 100 Marks
Time: 01:00-04:00

PART A

Answer ALL Questions
$(10 \times 2=20)$

1. Write down the Lagrange's equation of motion for a particle of mass m falling freely under gravity near the surface of the Earth.
2. Determine the degrees of freedom in the following cases:
a) 4 particles moving freely in space
b) A particle moving on a space curve.
3. What do you mean by cyclic co-ordinate?
4. Show that the generating function $\mathrm{F}=\Sigma \mathrm{qiPi}$ generates the identity transformation.
5. Explain invariable plane? What is inertia ellipsoid?
6. In Rutherford's experiment $10^{4} \alpha$-particles are scattered at an angle of 2°, Calculate the number of α particles scattered at an angle of 20°.
7. Discuss Legendre transformation.
8. Could you relate Poisson bracket in classical mechanics to commutator in quantum mechanics?
9. What is phase space?
10. Differentiate Coriolis force and centrifugal force.

PART B

Answer ANY FOUR Questions

$(4 \times 7.5=30)$
11. Obtain D'Alembert's principle in generalized coordinates and use it to derive the Lagrange's equations of motion for a holonomic conservative system.
12. Derive Lagrange's expression for a harmonic oscillator. Obtain the Hamiltonian and an equation of motion of a harmonic oscillator.
13. What are canonical transformation?.Explain with examples.
14. Prove that $\left[\mathrm{J}_{\mathrm{X}}, \mathrm{J}_{\mathrm{Y}}\right]=\mathrm{J}_{Z}$.
15. Calculate the inertia tensor for the system of four point masses $1 \mathrm{~g}, 2 \mathrm{~g}, 3 \mathrm{~g}$ and 4 g located at the points $(1,0,0),(1,1,0),(1,1,1)$ and (1.1.-1) cm.
16. For a rigid body consisting of N particles how many generalized co-ordinates will have to be specified? Derive Euler's transformation matrix for the orientation of rigid body.

PART C

Answer ANY FOUR Questions

17. State and prove the conservation theorem for linear momentum, angular momentum and energy for a system of N particles.
18. Define Poisson's bracket and discuss their properties.
19. Explain how to obtain the frequencies of periodic motion by using action-angle variables.
20. Consider the case of two coupled pendulums. Determine a) T and V matrices.
b) The normal frequencies. c) The normal coordinates. d)The equation of motion.
e)The eigen vectors. f)The general solution.
21. Discuss the theory of a spinning symmetrical top under gravity.
22. a)Find Lagrange's equation of motion for an electrical circuit comprising an inductance L and capacitance C.The capacitor is charged to q coulomb and the current flowing in the circuit is I ampere.
23. b) Use Lagrange's equation, Derive equation of motion of a compound pendulum in a vertical plane about a fixed horizontal axis. Find the period of small amplitude oscillations of the compound pendulum.
