LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2019

UPH 1502 - INTRODUCTION TO DIGITAL ELECTRONICS

Date: 01-11-2019
Dept. No. \square Max. : 100 Marks
Time: 09:00-12:00

PART A

Answer all questions:
($10 \times 2=20$)

1) Give the symbol and truth table of OR gate.
2) Draw AND gate using NOR gates.
3) Explain sum of products (SOP)
4) State de Morgan's theorem.
5) What is meant by binary number system?
6) Convert binary numbers (101011) $)_{2}$ to octal numbers.
7) Draw half adder circuit and give its truth table.
8) Add 13 and 7 using binary addition.
9) What is a flip-flop?
10) Draw the T flip-flop and give its truth table.

PART B

Answer any FOUR questions:
$(4 \times 7.5=30)$
11) Explain positive and negative logic.
12) Explain 4-variable K map with a suitable example.
13) Convert the following hexadecimal numbers to decimal a) $(\mathrm{E} 9)_{\mathrm{H}}$ b) $(\text { FFFF })_{\mathrm{H}}$ c) $(604)_{\mathrm{H}}$
14) How is 2 's complement representation used to perform subtraction?
15) Discuss the function of D flip-flop with suitable diagram.
16) Construct AND and OR gates using NAND gates.

PART C

Answer any FOUR questions:
($4 \times 12.5=50$)
17) Explain how NOR gate is used as AND, OR and NOT gate.
18) Simplify using K map $X=F(A, B, C . D)=\sum(0,1,3,5,7,9,11,12,13,14,15)$
19) What is gray code? Represent $(45)_{10}$ in binary and gray code.
20) Explain the working of a full adder with truth table.
21) Explain the operation of RS flip-flops
22) Simplify the Boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ in sum of products using don't care condition, d
$\mathrm{F}=\overline{\mathrm{B}}+\overline{\mathrm{A}} \overline{\mathrm{C}}$
$d=B C+A B$

