LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc. DEGREE EXAMINATION – PHYSICS

THIRD SEMESTER – NOVEMBER 2022

17/18UPH3MC01 – MATHEMATICAL PHYSICS

Date: 24-11-2022 Dept. No. Time: 09:00 AM - 12:00 NOON

	PART – A						
Q. No.	Answer ALL Questions(10 x 2 = 20 Marks)						
1	Express the complex number $\frac{1-i}{1+i}$ in $a + ib$ form.						
2	Simplify the following: (a) i^4 and (b) i^{999} .						
3	Find grad φ if $\varphi = x^2 y^3$.						
4	Define scalar and vector point functions.						
5	Write the Dirichlet conditions for a Fourier series.						
6	Find the Fourier transform of $f(x) = \begin{cases} 1, & for x < a \\ 0, & for x > a \end{cases}$						
7	Write the one-dimensional heat flow equation.						
8	Distinguish between ordinary and partial differential equations.						
9	Using Newton-Raphson formula, find the square root of a positive number k.						
10	Write the Lagrange's interpolation formula.						
	PART – B						
Answe	er any FOUR Questions (4 x 7.5 = 30 Marks)						
11	Derive Cauchy-Riemann equations for a function to be analytic.						
12	State and Prove Cauchy's integral theorem.						
13	Prove that $(y^2 - z^2 + 3yz - 2x)\hat{\imath} + (3xz + 2xy)\hat{\jmath} + (3xy - 2xz + 2z)\hat{k}$ is both solenoidal and						
	irrotational.						
14	Solve the differential equation $2x \frac{\partial f(x,y)}{\partial x} - 3y \frac{\partial f(x,y)}{\partial y} = 0$ by the method of separation of						
	variables.						
15	Using the method of least squares, fit a straight line to the following data.						
	x 1 2 3 4						
	y 1.7 1.8 2.3 3.2						
16	Use Newton-Raphson method to evaluate the roots of the function $f(x) = x^3 - 2x - 5 = 0$						

Max. : 100 Marks

PART – C										
Answe	r any FOUR Questions	6				(4 x 12	.5 = 50 Mark	s)		
17	(i)	Express	in	pola	r i	form:	$1 - \sqrt{2} +$	i		
	(2.5)									
	(ii) Evaluate $\int \frac{e^z}{dz} dz$ Where 'c' is the circle $ z = 2$ by using Cauchy's integral formula									
	(ii) Evaluate $\int_{\mathcal{C}(\overline{z-1})(z-4)} dz$, where c is the energia of $ z = 2$ by using Cauchy's integral formula.									
10	A. A. Î						(10))		
18	If $\vec{v} = \frac{x\hat{\iota}+y\hat{\jmath}+z\hat{k}}{\sqrt{x^2+y^2+z^2}}$, find the values of $div \vec{v}$ and $curl \vec{v}$.									
19	Find the Fourier series	of the function	on							
	$(-1, if -\pi < x < -\frac{\pi}{2})$									
	f(x) =	$\begin{cases} 0, if - \end{cases}$	$\frac{\pi}{2} < x < \frac{\pi}{2}$							
	$\left(+1, if \frac{\pi}{2} < x < \pi \right)$									
20	0 Obtain the solution of the wave equation $\frac{\partial^2 v}{\partial t^2 = c^2 \partial^2 v} \frac{\partial x^2}{\partial x^2}$ using the method of separation of									
	variables.		1 2	5	U		1			
21	The following table g	ives the popu	lation of a	town during	the last six	census. Es	timate using a	any		
	suitable interpolation	formula, the in	ncrease in p	opulation du	uring the per	riod from 19	946 to 1948.	-		
	Year	1911	1921	1931	1941	1951	1961			
	Population in	12	15	20	27	30	52			
- 22	thousands	12	15	20	21	57	1			
²² Use (i) Trapezoidal rule and (ii) Simpson's 1/3 rd rule, to evaluate the approximate v								$\frac{dx}{dx}$		
	correct to 3 decimals taking h =0.25.									
	(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(