LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

THIRD SEMESTER - NOVEMBER 2022

17/18UPH3MC01 - MATHEMATICAL PHYSICS

Date: 24-11-2022
Time: 09:00 AM - 12:00 NOON \qquad

PART - A
Q. No. Answer ALL Questions
(10×2 = 20 Marks)
1 Express the complex number $\frac{1-i}{1+i}$ in $a+i b$ form.
2 Simplify the following: (a) i^{4} and (b) i^{999}.
$3 \quad$ Find $\operatorname{grad} \varphi$ if $\varphi=x^{2} y^{3}$.
4 Define scalar and vector point functions.
5 Write the Dirichlet conditions for a Fourier series.
$6 \quad$ Find the Fourier transform of $f(x)=\left\{\begin{array}{l}1, \text { for }|x|<a \\ 0, \text { for }|x|>a\end{array}\right.$.
7 Write the one-dimensional heat flow equation.
$8 \quad$ Distinguish between ordinary and partial differential equations.
9 Using Newton-Raphson formula, find the square root of a positive number k .
10 Write the Lagrange's interpolation formula.

PART - B

Answer any FOUR Questions
($4 \times 7.5=30$ Marks)
11 Derive Cauchy-Riemann equations for a function to be analytic.
12 State and Prove Cauchy's integral theorem.
13 Prove that $\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{\imath}+(3 x z+2 x y) \hat{\jmath}+(3 x y-2 x z+2 z) \hat{k}$ is both solenoidal and irrotational.

14 Solve the differential equation $2 x \frac{\partial f(x, y)}{\partial x}-3 y \frac{\partial f(x, y)}{\partial y}=0$ by the method of separation of variables.

15 Using the method of least squares, fit a straight line to the following data.

x	1	2	3	4
y	1.7	1.8	2.3	3.2

PART - C

Answer any FOUR Questions
17 (i) Express in polar form: $\quad 1-\sqrt{2}+i$
(2.5)
(ii) Evaluate $\int_{c\left(\frac{e^{z}}{z-1)(z-4)}\right.} d z$, Where ' c ' is the circle $|z|=2$ by using Cauchy's integral formula.

18 If $\vec{v}=\frac{x \hat{\imath}+y \hat{\jmath}+z \hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}$, find the values of $\operatorname{div} \vec{v}$ and $\operatorname{curl} \vec{v}$.
19 Find the Fourier series of the function

$$
f(x)=\left\{\begin{array}{rc}
-1, & \text { if }-\pi<x<-\frac{\pi}{2} \\
0, & \text { if }-\frac{\pi}{2}<x<\frac{\pi}{2} \\
+1, & \text { if } \quad \frac{\pi}{2}<x<\pi
\end{array}\right.
$$

20 Obtain the solution of the wave equation $\partial^{2} y / \partial t^{2}=c^{2} \partial^{2} y / \partial x^{2}$ using the method of separation of variables.

21 The following table gives the population of a town during the last six census. Estimate using any suitable interpolation formula, the increase in population during the period from 1946 to 1948.

Year	1911	1921	1931	1941	1951	1961
Population in thousands	12	15	20	27	39	52

Use (i) Trapezoidal rule and (ii) Simpson's $1 / 3^{\text {rd }}$ rule, to evaluate the approximate value of $\int_{0}^{1} \frac{d x}{1+x}$ correct to 3 decimals taking $\mathrm{h}=0.25$.

