LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **PHYSICS**

FIRST SEMESTER – **NOVEMBER 2022**

PPH1MC01 – CLASSICAL MECHANICS

Date: 23-11-2022 Dept. No. Time: 01:00 PM - 04:00 PM

SECTION - A					
	Answer ALL the Questions				
1	Answer the following	$(5 \times 1 = 5)$			
a)	A body is kept moving with uniform speed on a circle of radius <i>r</i> by a centripetal force <i>F</i> acting on it. How much work is done in one rotation?	K1	CO1		
b)	Define phase space.	K1	CO1		
c)	What are generalised co-ordinates?	K1	CO1		
d)	Write down Hamilton's characteristic function.	K1	CO1		
e)	A uniform string having a mass is suspended from ceiling with a load at the lower end. Will the tension in the string be uniform? Where will the tension be maximum?	K1	CO1		
2	wer the following $(5 \times 1 = 5)$				
a)	Is the force $\mathbf{F}=(2xy + yz^2)\mathbf{i} + (x^2 + xz^2)\mathbf{j} + 2xyz\mathbf{k}$ conservative (or) non conservative.	K2	CO1		
b)	Give an example of cyclic co-ordinate.	K2	CO1		
c)	What is the dimension of the product of generalised co-ordinate and its conjugate momentum ?	K2	CO1		
d)	Determine the number of degrees of freedom of a particle moving on a space curve.	K2	CO1		
e)	State conservation theorem for linear momentum for an N-particles system.	K2	CO1		
	SECTION - B		1		
	Answer any THREE of the following in 500 words	Answer any THREE of the following in 500 words $(3 \times 10 = 30)$			
3	Write the Hamiltonian of a simple pendulum and obtain its equation of motion.	K3	CO2		
4	Derive Lagrange's equation from Hamilton's principle.	K3	CO2		
5	Calculate the inertia tensor for a system of four point masses 1 g, 2 g, 4 g and 5 g located at the points (1 0 0), (1 1 0), (1 2 1), (2 1 -1) cm.	K3	CO2		
6	Show that in the absence of the external torque the total angular momentum of a system of particles is conserved.	K3	CO2		
7	Prove that [Jx,Jy]=Jz.	K3	CO2		

Max. : 100 Marks

	SECTION - C					
	Answer any TWO of the following in 500 words (2 x 12.5 =					
	Deduce the Lagrange's equation of motion for an L-C circuit comprising of an					
8	inductance L and capacitance C; consider that the capacitor is charged to q coulomb	K4	CO3			
	and current flowing in the circuit is I ampere.					
9	A particle describes a conic r=p/(1+e cos θ) where p and e are constants. Show that	K4	CO3			
	the force under which the particle is moving in a central force. Deduce the force law.					
10	Deduce the eigen-value equation for coupled oscillators. How will you obtain the	K4	CO3			
10	eigen-values (ω^2) and eigen-vectors from this equation?					
11	Classify the various types of constraints with examples.	K4	CO3			
	SECTION - D					
	Answer any ONE of the following in 1000 words(1 x 15)					
12	Obtain the Lagrangian, Hamiltonian and equation of motion for a projectile near the surface of the earth.	K5	CO4			
13	Discuss in detail the torque free motion of a rigid body.	K5	CO4			
	SECTION - E					
1	Answer any ONE of the following in 1000 words(1 x 20) = 20)			
14	Briefly discuss the motion for a particle under inverse square law of force and obtain the condition for a closed orbit.	K6	CO5			
15	What are action angle variables? How do you determine the frequency of a harmonic oscillator.	K6	CO5			