LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - PHYSICS

FIRST SEMESTER - NOVEMBER 2022
PPH1MC01 - CLASSICAL MECHANICS

Date: 23-11-2022
Time: 01:00 PM - 04:00 PM
Dept. No. \square

Max. : 100 Marks

SECTION - A			
Answer ALL the Questions			
1	Answer the following	($5 \times 1=5$)	
a)	A body is kept moving with uniform speed on a circle of radius r by a centripetal force F acting on it. How much work is done in one rotation?	K1	CO1
b)	Define phase space.	K1	CO1
c)	What are generalised co-ordinates?	K1	CO1
d)	Write down Hamilton's characteristic function.	K1	CO1
e)	A uniform string having a mass is suspended from ceiling with a load at the lower end. Will the tension in the string be uniform? Where will the tension be maximum?	K1	CO1
2	Answer the following	($5 \times 1=5$)	
a)	Is the force $\mathbf{F}=\left(2 x y+y z^{2}\right) \mathbf{i}+\left(x^{2}+x z^{2}\right) \mathbf{j}+2 x y z \mathbf{k}$ conservative (or) non conservative.	K2	CO1
b)	Give an example of cyclic co-ordinate.	K2	CO1
c)	What is the dimension of the product of generalised co-ordinate and its conjugate momentum?	K2	CO1
d)	Determine the number of degrees of freedom of a particle moving on a space curve.	K2	CO1
e)	State conservation theorem for linear momentum for an N-particles system.	K2	CO1
SECTION - B			
	Answer any THREE of the following in 500 words	($\mathbf{~ \times ~ 1 0 - 3 0) ~}$	
3	Write the Hamiltonian of a simple pendulum and obtain its equation of motion.	K3	CO 2
4	Derive Lagrange's equation from Hamilton's principle.	K3	CO2
5	Calculate the inertia tensor for a system of four point masses $1 \mathrm{~g}, 2 \mathrm{~g}, 4 \mathrm{~g}$ and 5 g located at the points (100), (110), (121), (21-1) cm.	K3	CO 2
6	Show that in the absence of the external torque the total angular momentum of a system of particles is conserved.	K3	CO 2
7	Prove that [Jx, Jy] $=\mathrm{Jz}$.	K3	CO 2

Answer any TWO of the following in $\mathbf{5 0 0}$ words		($2 \times 12.5=25$)	
8	Deduce the Lagrange's equation of motion for an L-C circuit comprising of an inductance L and capacitance C ; consider that the capacitor is charged to q coulomb and current flowing in the circuit is I ampere.	K4	CO3
9	A particle describes a conic $\mathrm{r}=\mathrm{p} /(1+\mathrm{e} \cos \theta)$ where p and e are constants. Show that the force under which the particle is moving in a central force. Deduce the force law.	K4	CO3
10	Deduce the eigen-value equation for coupled oscillators. How will you obtain the eigen-values (ω^{2}) and eigen-vectors from this equation?	K4	CO3
11	Classify the various types of constraints with examples.	K4	CO3
SECTION - D			
Answer any ONE of the following in $\mathbf{1 0 0 0}$ words		($1 \times 15=15$)	
12	Obtain the Lagrangian, Hamiltonian and equation of motion for a projectile near the surface of the earth.	K5	CO4
13	Discuss in detail the torque free motion of a rigid body .	K5	CO4
SECTION - E			
Answer any ONE of the following in $\mathbf{1 0 0 0}$ words		$(1 \times 20=20)$	
14	Briefly discuss the motion for a particle under inverse square law of force and obtain the condition for a closed orbit.	K6	CO5
15	What are action angle variables? How do you determine the frequency of a harmonic oscillator.	K6	CO5

@@@@@@

