LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **PHYSICS**

FIRST SEMESTER – NOVEMBER 2022

UPH 1502 – INTRODUCTION TO DIGITAL ELECTRONICS

Date: 03-12-2022 D Time: 01:00 PM - 04:00 PM

Dept. No.

Max.: 100 Marks

SECTION A							
Answer ALL the Questions							
1. Define the following			(5 x 1 = 5)				
i	Flip flop	K1	CO1				
ii	De Morgan's theorem	K1	CO1				
iii	Encoder	K1	CO1				
iv	1's complement representation of a binary number	K1	CO1				
v	Octal number system	K1	CO1				
2.	Fill in the blanks		$(5 \times 1 = 5)$				
i	are universal gates.	K1	CO1				
ii	select lines are required for an 8-1 multiplexer.	K1	CO1				
iii	The flip flop is a device.	K1	CO1				
iv	The result of binary addition of 1101 & 1100 is	K1	CO1				
v	The abbreviation of ASCII stand for	K1	CO1				
3. State whether true or false			(5 x 1 = 5)				
i	Both OR and AND gates can have only two inputs.	K2	CO1				
ii	The standard form of S-R flip flop is Set-Reset	K2	CO1				
iii	All the rules for Boolean algebra are exactly the same as for ordinary algebra.	K2	CO1				
iv	A circuit with many inputs but only one output is called a multiplexer.	K2	CO1				
v	If the sign bit is zero, the given number is positive.	K2	CO1				
4. Choose the correct answer $(5 \ge 1 = 5)$							
i	1's complement representation of 1101 0110 is a)0010 1010 b) 0010 1001 c) 1110 1000 d)1010 1010	K2	CO1				
ii	How many select lines will be there if the inputs of a demultiplexer are 4? a) One b) Five c) Three d) Two	K2	CO1				
iii	Octal to binary conversion: $(24)_8$ is equal to a) $(111101)_2$ b) $(010100)_2$ c) $(111100)_2$ d) $(101010)_2$	K2	CO1				
iv	a) Flip flop b) full adder c) half adder d) none of the above.	K2	CO1				

v	A 3-input NOR gate has eight input possibilities, how many of those possibilities will result in a HIGH output? 1 b) 2 c) 7 d) 8		CO1			
	SECTION B					
Answer any TWO of the following in about 150 words (2 x 10 = 20)						
5.	(a)Apply De Morgan's theorem and find the complement of $\overline{\overline{AB} + A\overline{B}} = \overline{A\overline{B} + AB}$. (5) (b) Show that $(\overline{A} + B)$ $(\overline{B} + C) (\overline{C} + A) = (A + \overline{B}) (B + \overline{C}) (C + \overline{A})$ (5)	K3	CO2			
6.	Solve the following	K3	CO2			
	a) Add 94 & 125 in binary number system (5)					
	b) Subtract 87 from 165 in binary number system (5)					
7.	$(298.A)_{\rm H} = (X)_{10} = (Y)_2 = (Z)_8$. Find X, Y, Z		CO2			
8.	Show the working of a 2-4 decoder with a block diagram and truth table.		CO2			
	SECTION C					
Answ	er any TWO of the following in 150 words	(2 x	(10 = 20)			
9.	(a)Analyse and reduce the Boolean expression $F(A,B,C) = ABC + \overline{ABC} + \overline{ABC} + AB\overline{C} + AB\overline{C} + \overline{ABC}$ $Y = [A\overline{B}(C + BD) + \overline{AB}]C.$	K4	CO3			
10.	Explain the working of 4-1 multiplexer with truth table and block diagram.	K4	CO3			
11.	Using 2's complement, subtract (i) 75 from 45 (5)	K4	CO3			
	(1) 88 11011 120					
12.	With a circuit diagram explain the working of clocked RS flip flop.	K4	CO3			
	SECTION D					
Answ	$(1 \times 20 = 20)$					
13.	a) Illustrate the function of NAND as an universal gate (12) b) Simplify (i) $F(A, B,C) = \sum (1,3,4,5,6,7)$ (4) (ii) $F(A, B,C) = \sum (0,2,4,6,7)$ (4)	K5	CO4			
14.	a) Convert (10) (i) $(FF.E6)_{16}$ to binary, (ii) $(88.525)_{10}$ to Hex, (iii) $(49.625)_{10}$ to octal, (iv) $(11011011.1111)_{2}$ to octal b) Explain the working of D- flip flop with the circuit diagram and truth table. (10)	K5	CO4			
	SECTION E					
Ansv	ver any ONE of the following	(1 :	x 20 = 20)			
15.	(a) Construct half adder and full adder circuit and explain its working.Write down the truth tables.(b) Represent (175) ₁₀ in binary and Gray code.(6)	K6	CO5			
16.	Image: A structureImage: A structureImag					

(12)		
