LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS
 FIRST SEMESTER - NOVEMBER 2022

UPH 1502 - INTRODUCTION TO DIGITAL ELECTRONICS

Date: 03-12-2022
Time: 01:00 PM - 04:00 PM \square
Dept. No.
Max. : 100 Marks

SECTION A			
Answer ALL the Questions			
1. Define the following		(5 x 1 = 5)	
i	Flip flop	K1	CO1
ii	De Morgan's theorem	K1	CO1
iii	Encoder	K1	CO1
iv	1's complement representation of a binary number	K1	CO1
v	Octal number system	K1	CO1
2. Fill in the blanks		(5x1-5)	
i are universal gates.	K1	CO1
ii	$\ldots \ldots \ldots \ldots \ldots \ldots$ select lines are required for an 8-1 multiplexer.	K1	CO1
iii	The flip flop is a device.	K1	CO1
iv	The result of binary addition of 1101 \& 1100 is	K1	CO1
v	The abbreviation of ASCII stand for.....................	K1	CO1
3. State whether true or false		($5 \times 1=5$)	
i	Both OR and AND gates can have only two inputs.	K2	CO1
ii	The standard form of S-R flip flop is Set-Reset	K2	CO1
iii	All the rules for Boolean algebra are exactly the same as for ordinary algebra.	K2	CO1
iv	A circuit with many inputs but only one output is called a multiplexer.	K2	CO1
v	If the sign bit is zero, the given number is positive.	K2	CO1
4. Choose the correct answer		($5 \times 1=5$)	
i	1's complement representation of 11010110 is \qquad a)0010 1010 b) 00101001 c) 11101000 d) 10101010	K2	CO1
ii	How many select lines will be there if the inputs of a demultiplexer are 4? a) One b) Five c) Three d) Two	K2	CO1
iii	Octal to binary conversion: $(24)_{8}$ is equal to a) $(111101)_{2}$ b) $(010100)_{2}$ c) $(111100)_{2}$ d) $(101010)_{2}$	K2	CO1
iv is an example for sequential circuit. a) Flip flop b) full adder c) half adder d) none of the above.	K2	CO1

SECTION B

Answer any TWO of the following in about 150 words		$(2 \times 10=20)$	
5.	(a)Apply De Morgan's theorem and find the complement of $\overline{\bar{A} B+A \bar{B}}=$ $\bar{A} \bar{B}+A B$. (b) Show that $(\bar{A}+\mathrm{B})(\bar{B}+\mathrm{C})(\bar{C}+\mathrm{A})=(\mathrm{A}+\bar{B})(\mathrm{B}+\bar{C})(\mathrm{C}+\bar{A})(\mathbf{5})$	K3	CO2
6.	Solve the following a) Add $94 \& 125$ in binary number system b) Subtract 87 from 165 in binary number system	K3	CO2
7.	$(298 . \mathrm{A})_{\mathrm{H}}=(\mathrm{X})_{10}=(\mathrm{Y})_{2}=(\mathrm{Z})_{8}$. Find $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$	K3	CO2
8.	Show the working of a 2-4 decoder with a block diagram and truth table.	K3	CO2

SECTION C

Answer any TWO of the following in $\mathbf{1 5 0}$ words
($\mathbf{2} \times 10=20$)
9. (a)Analyse and reduce the Boolean expression

	K4	CO3
h table and block diagram.	K4	CO3
subtract (i) 75 from 45	K4	CO3
88 from 126		
locked RS flip flop.	K4	CO3

SECTION D

Answer any ONE of the following

$(\mathbf{1} \times \mathbf{2 0}=\mathbf{2 0})$		
(12) (4)	K 5	CO 4
(4)		
$\mathbf{(1 0)}$	K 5	CO 4
truth		
$\mathbf{(1 0)}$		

SECTION E

Answer any ONE of the following

15. (a) Construct half adder and full adder circuit and explain its working. Write down the truth tables.
(b) Represent (175) $)_{10}$ in binary and Gray code.
16. (a) Design the K-map and give the output of the following expression
$Y=F(A, B, C, D)=\sum(0,2,3,6,7)+\sum_{d}(5,8,10,11,15)$
(b) Describe the working of a JK flip flop with a neat diagram and give its truth
table.
