LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - STATISTICS
 THIRD SEMESTER - NOVEMBER 2022

UPH 3401 - NUMERICAL METHODS AND C++ PROGRAMMING

Date: 01-12-2022
Dept. No.
Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

SECTION - A

Answer ALL the Questions

1. Fill in the blanks

a)	The bisection method is used to find the roots of a	K1	CO1
b)	Simpson's $1 / 3{ }^{\text {rd }}$ rule is an extension of the	K1	CO1
c)	$\mathrm{C}++$ language was developed by	K1	CO1
d)	The formula for Newton's forward interpolation is	K1	CO1
e)	Character-manipulation functions are declared in	K1	CO1
2.	Multiple Choice Questions	($5 \times 1=5$)	

a) The memory locations in the array are known as \qquad of array.
K1 CO1
i) functions ii) elements iii) data iv) sets
b) Using which of the following data type can 19.54 be represented?
K1 CO1
i) void ii) double iii) int iv) None
c) The principle behind bisection method is \qquad theorem for continuous functions.
i) dichotomy ii) intermediate iii) root-finding iv) interval-halving
d) Simpson rule can be derived from divided difference polynomial.

K1 CO1
i) Newton's ii) Lagrange's iii) Gauss iv) Trapezoidal
e) Variable is a location in memory, referenced by \qquad .
K 1 CO 1
i) tokens ii) keywords iii) an identifier iv) functions
3. Answer the following

K 2	CO 1
K 2	CO 1

a) What is regulafalsi method?
b) What is a structure?
($5 \times 1=5$)
4. Match the following

a)	Structure	i) Collection of information	K2	CO1
b)	Data	ii) Collection of variables	K2	CO1
c)	Newton's method	iii) Instance of class	K2	CO1
d)	Object	iv) Set of statements	K2	CO1
e)	Function	v) Iterative Prowesedure	K2	CO1

SECTION - B

An	er any TWO of the following in 100 words	$(2 \times 10=20)$	
5.	Apply bisection method to determine the root of the given equation $x^{2}-3=0$ for $\mathrm{x} \in[1,2]$.	K3	CO2
6.	Solve $\int_{0}^{10} \frac{d x}{1+x^{2}}$ by Simpson's $\frac{1}{3}$ and $\frac{3}{8}$ rule. Use $h=1$.	K3	CO 2
7.	Illustrate about structure in $\mathrm{C}++$.	K3	CO 2
8.	Elucidate conditional and loop statements in $\mathrm{C}++$ with examples.	K3	CO 2

SECTION - C

Answer any TWO of the following in 100 words		$(2 \times 10=20)$	
9.	Evaluate the positive root lying between 0 and 1 of the equation $x^{3}+x^{2}-1=0$ by iteration method.	K4	CO3
10.	$h=0.2$ and $y(0)=1$.	K4	CO3
11.	Discuss about the constant and variable in $\mathrm{C}++$ programming.	K4	CO3
12.	Describe calling a function by reference and by value with sample programs.	K4	CO3

SECTION - D

Answer any ONE of the following in $\mathbf{2 5 0}$ words

13. i) Solve the following equations using Gauss elimination method.
$-7 x-3 y+3 z=12 ; 2 x+2 y+2 z=0 ;-x-4 y+3 z=-9$ (10 marks)
ii) Using the given table evaluate $f(8)$ and $f(15)$ by Lagrange's interpolation formula. (10 marks)

x	4	5	7	10	11	13
$f(x)$	48	100	294	900	1210	2028

14. Bring out the importance of operators in $\mathrm{C}++$ programming. Give examples.
a.

SECTION - E

Answer any ONE of the following in $\mathbf{2 5 0}$ words
15.
i) Integrate the equation $\int_{0}^{1} e^{x} d x$ by Trapezoidal rule.Divide the range into 4 equal
parts $\quad(8$ marks)
ii) By modified Euler's method, find y when $x=0.1$ for $y^{\prime}=x^{2}+y$; Given $h=$ $0.05, y(0)=1$ (12 marks)
16. With relevant examples discuss in detail (i) switch ii) break iii) continue and iv) go to

K 6	CO 5
K 6	CO

