LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **STATISTICS**

THIRD SEMESTER – **NOVEMBER 2022**

UPH 3401 – NUMERICAL METHODS AND C++ PROGRAMMING

Date: 01-12-2022 Dept. No. Time: 09:00 AM - 12:00 NOON Max.: 100 Marks

SECTION - A					
Answer ALL the Questions					
1.	Fill in the blanks	(5 x 1 = 5)			
a)	The bisection method is used to find the <u>roots of a</u> equation.	K1	CO1		
b)	Simpson's 1/3 rd rule is an extension of the rule.	K1	CO1		
c)	C++ language was developed by	K1	CO1		
d)	The formula for Newton's forward interpolation is	K1	CO1		
e)	Character-manipulation functions are declared in library.	K1	CO1		
2.	Multiple Choice Questions	(5 x 1 = 5)			
a)	The memory locations in the array are known as of array. i) functions ii) elements iii) data iv) sets	K1	CO1		
b)	Using which of the following data type can 19.54 be represented? i) void ii) double iii) int iv) None	K1	CO1		
c)	The principle behind bisection method is theorem for continuous functions. i) dichotomy ii) intermediate iii) root-finding iv) interval-halving	K1	CO1		
d)	Simpson rule can be derived from divided difference polynomial. i) Newton's ii) Lagrange's iii) Gauss iv) Trapezoidal	K1	CO1		
e)	Variable is a location in memory, referenced by	K1	CO1		
	i) tokens ii) keywords iii) an identifier iv) functions				
3.	Answer the following (5 x 1 = 5)				
a)	What is regulafalsi method?	K2	CO1		
b)	What is a structure?	K2	CO1		
c)	List the tokens of C++ language.	K2	CO1		
d)	What is a loop in C++?	K2	CO1		
e)	What is a function in C++?	K2	CO1		
4.	Match the following	(5 x 1 = 5)			
a)	Structure i) Collection of information	K2	CO1		
b)	Data ii) Collection of variables	K2	CO1		
c)	Newton's method iii) Instance of class	K2	CO1		
d)	Object iv) Set of statements	K2	CO1		
e)	Function v) Iterative Procedure	K2	CO1		

SECTION - B					
Answer any TWO of the following in 100 words(2 x 10 = 20)					
5.	Apply bisection method to determine the root of the given equation $x^2 - 3 = 0$ for $x \in [1, 2]$.	K3	CO2		
6.	Solve $\int_0^{10} \frac{dx}{1+x^2}$ by Simpson's $\frac{1}{2}$ and $\frac{3}{2}$ rule. Use $h = 1$.	K3	CO2		
7.	Illustrate about structure in C++.	K3	CO2		
8.	Elucidate conditional and loop statements in C++ with examples.	K3	CO2		
	SECTION - C				
Answer any TWO of the following in 100 words			(2 x 10 = 20)		
9.	Evaluate the positive root lying between 0 and 1 of the equation $x^3 + x^2 - 1 = 0$ by iteration method.	[,] K4	CO3		
10.	Using Runge-Kutta IV order method, estimate y at $x = 0.2$ if $y' = \frac{y+x}{y-x}$ Given	: K4	CO3		
	h = 0.2 and $y(0) = 1$.				
11.	Discuss about the constant and variable in C++ programming.	K4	CO3		
12.	Describe calling a function by reference and by value with sample programs.	K4	CO3		
	SECTION - D				
Answer any ONE of the following in 250 words			$(1 \times 20 = 20)$		
13.	 i) Solve the following equations using Gauss elimination method. -7x - 3y + 3z = 12; 2x + 2y + 2z = 0; -x - 4y + 3z = -9 (10 marks) ii) Using the given table evaluate f(8) and f(15) by Lagrange's interpolation formula (10 marks) 				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
14	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	K5	CO4		
1.1.	SECTION - F	IX.5	004		
Ans	wer any ONE of the following in 250 words	(1 v 2() = 20)		
15	wer any ONE of the following in 250 words $1 + 1 + 2 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + $	(IX2)	-20)		
15.	1) Integrate the equation $\int_0^\infty e^x dx$ by Trapezoidal rule.Divide the range into 4 equa		005		
	i) By modified Euler's method, find y when $x = 0.1$ for $y' = x^2 + y$; Given $h = 0.1$	=			
	0.05, y(0) = 1 (12 marks)				
16.	With relevant examples discuss in detail (i) switch ii) break iii) continue and iv) go to) K6	CO5		
<u> </u>	statement in C++.				