LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

U.G. DEGREE EXAMINATION – **ALLIED**

THIRD SEMESTER - NOVEMBER 2022

UPH 3405 - DIGITAL ELECTRONICS

Date: 01-12-2022	Dept. No.	Max.: 100 Marks

Time: 09:00 AM - 12:00 NOON

	SECTION A						
Ans	swer ALL the Questions						
1.	Answer the following	$(5 \times 1 = 5)$					
a)	Convert (50) ₁₆ into a decimal number	K1	CO1				
b)	What are the basic logic gates?	K1	CO1				
c)	Write any one of the Boolean laws.	K1	CO1				
d)	What is a latch?	K1	CO1				
e)	What is meant by a shift register?	K1	CO1				
2.	Fill in the blanks	$(5 \times 1 = 5)$					
a)	The right most bit of a binary number is called bit.	K1	CO1				
b)	$A(A+B) = \underline{\hspace{1cm}}.$	K1	CO1				
c)	When the set is enabled in S-R flip flop then the output will be	K1	CO1				
d)	If a signal passing through a gate by sending a LOW into one of the inputs, and the output is HIGH, the gate is a	K1	CO1				
e)	Ais defined as the group of flip-flops suitable for storing a binary data.	K1	CO1				
3.	$\frac{1}{1}$						
a)	What is the sum of the binary numbers 101001+ 010011=? 010100 b) 111100 (c) 000111 (d) 101110	K2	CO1				
b)	How many methods of shifting of data are available? (a) 2 (b) 3 (c) 4 (d) 5	K2	CO1				
c)	The clear input is used to make output	K2	CO1				
d)	The hexadecimal representation of the binary number 1110 is		CO1				
e)	The sum of products of canonical forms also known as (a) Maximum term expansion (b) Minimum term expansion (c) Both a and b (d) None of the above.	K2	CO1				
4.	State True or False		(5 x 1 =				
	5)						
a)	All JK flip flops are taken as negative edge triggered flip flops in mod counters.	K2	CO1				
b)	The output of an exclusive-OR (XOR) gate is 1 only when the inputs are different.	K2	CO1				

c)	The 8-bit binary representation of A3 is 10100010.	K2	CO1	
d)	A shift register can be constructed using D flip – flops and JK flip flop.	K2	CO1	
e)	A truth table gives the output state for each possible input state combination.	K2	CO1	
	SECTION B			
Ans	wer any TWO of the following in 100 words	(2 x 10 =	= 20)	
5.	Draw the diagram of AND, OR, NOT, NAND, NOR gates and illustrate their working with the truth table.	K3	CO2	
6.	Apply the laws of Boolean algebra and solve	К3	CO2	
	(a) $Y = [A\bar{B}(C+BD) + \bar{A}\bar{B}]C$ (6 marks)			
	(b) $F(A, B, C, D) = BC + A\overline{C} + AB + BCD$ (4 marks)			
7.	Using the NAND Latch, explain the working of a clocked RS flip flop.	K3	CO2	
8.	What is a counter? Illustrate the working of mod 4 and mod 8 counters.	К3	CO2	
	SECTION C	l	l	
Answer any TWO of the following in 100 words			$(2 \times 10 = 20)$	
9.	Explain briefly: SOP, POS, minterm & maxterm.	K4	CO3	
10.	Convert	K4	CO3	
	(a) (200) ₈ into its equivalent binary number.			
	(b) (120) ₈ into a decimal number. (5+5 marks)			
11.	Analyse the working of a D flip flop with a neat diagram.	K4	CO3	
12.	(a) Simplify using K – map: $F(A, B, C) = \Sigma (1,2,5,6)$	K4	CO3	
	(b) Simplify $Y = [AB (C + BD) + A B]$ (5+5 marks)			
	SECTION D			
Answer any ONE of the following in 250 words			$(1 \times 20 = 20)$	
13.	 (a) Evaluate using K map Y = F (A, B, C, D) = Σ (0,2,3,5,7,9,11,12,14,15). (b) Convert the decimal number 567 to base 2, base 8, base 16. (10 + 10 marks) 	K5	CO4	
14.	(a) How can we convert a JK flip flop into D and T flip flops?	K5	CO4	
17.	(b) Discuss the operation of 3-bit up ripple counter. (10 + 10 marks)	IXS	004	
	SECTION E			
Answer any ONE of the following in 250 words			$(1 \times 20 = 20)$	
15.	With the relevant circuit diagrams demonstrate that the NAND and NOR gates are universal gates.	K6	CO5	
16.				
	(b) Explain the working of shift right and shift left shift register with a neat diagrams.			
	(10+10 marks)			

\$\$\$\$\$\$\$