LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

U.G. DEGREE EXAMINATION - ALLIED

THIRD SEMESTER - NOVEMBER 2022
UPH 3405 - DIGITAL ELECTRONICS

Date: 01-12-2022
Time: 09:00 AM - 12:00 NOON
Max. : 100 Marks

SECTION A

Answer ALL the Questions

1.	Answer the following	($5 \times 1=5$)	
a)	Convert (50) ${ }_{16}$ into a decimal number	K1	CO1
b)	What are the basic logic gates?	K1	CO1
c)	Write any one of the Boolean laws.	K1	CO1
d)	What is a latch?	K1	CO1
e)	What is meant by a shift register?	K1	CO1
2.	Fill in the blanks	($5 \times 1=5$)	
a)	The right most bit of a binary number is called ___ bit.	K1	CO1
b)	$\mathrm{A}(\mathrm{A}+\mathrm{B})=$	K1	CO1
c)	When the set is enabled in S-R flip flop then the output will be ___.	K1	CO1
d)	If a signal passing through a gate by sending a LOW into one of the inputs, and the output is HIGH, the gate is a \qquad .	K1	CO1
e)	A \qquad is defined as the group of flip-flops suitable for storing a binary data.	K1	CO1
3.	MCQ	($5 \times 1=5$)	
a)	What is the sum of the binary numbers $101001+010011=$? 010100 b) 111100 (c) 000111 (d) 101110	K2	CO1
b)	How many methods of shifting of data are available? (a) 2 (b) 3 (c) 4 (d) 5	K2	CO1
c)	The clear input is used to make output \qquad (a) $\mathrm{Q}=1$ (b) $\mathrm{Q}=0$ (c) invalid (d) No Change	K2	CO1
d)	The hexadecimal representation of the binary number 1110 is \qquad (a) 0111 (b) E (c) 15 (d) 14		CO1
e)	The sum of products of canonical forms also known as \qquad (a) Maximum term expansion (b) Minimum term expansion (c) Both a and b (d) None of the above.	K2	CO1

4. State True or False

a)	All JK flip flops are taken as negative edge triggered flip flops in mod counters.	K2	CO1
b)	The output of an exclusive-OR (XOR) gate is 1 only when the inputs are different.	K2	CO1

c)	The 8-bit binary representation of A3 is 10100010.	K2	CO1
d)	A shift register can be constructed using D flip - flops and JK flip flop.	K2	CO1
e)	A truth table gives the output state for each possible input state combination.	K2	CO1
SECTION B			
Answer any TWO of the following in 100 words		($\mathbf{\times 1 0} \mathbf{~ = ~ 2 0) ~}$	
5.	Draw the diagram of AND, OR, NOT, NAND, NOR gates and illustrate their working with the truth table.	K3	CO2
6.	Apply the laws of Boolean algebra and solve (a) $\mathrm{Y}=[\mathrm{A} \bar{B}(\mathrm{C}+\mathrm{BD})+\bar{A} \bar{B}] \mathrm{C}$ (b) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{BC}+\mathrm{A} \bar{C}+\mathrm{AB}+\mathrm{BCD}$	K3	CO2
7.	Using the NAND Latch, explain the working of a clocked RS flip flop.	K3	CO2
8.	What is a counter? Illustrate the working of $\bmod 4 \operatorname{and} \bmod 8$ counters.	K3	CO2
SECTION C			
Answer any TWO of the following in $\mathbf{1 0 0}$ words		($2 \times 10=20)$	
9.	Explain briefly: SOP, POS, minterm \& maxterm.	K4	CO3
10.	Convert (a) $(200)_{8}$ into its equivalent binary number. (b) (120) ${ }_{8}$ into a decimal number.	K4	CO3
11.	Analyse the working of a D flip flop with a neat diagram.	K4	CO3
12.	(a) Simplify using $K-$ map: $F(A, B, C)=\Sigma(1,2,5,6)$ (b) Simplify $Y=[A B(C+B D)+A B]$	K4	CO3
SECTION D			
Answer any ONE of the following in $\mathbf{2 5 0}$ words		(1 $\times 20=20$)	
13.	(a) Evaluate using K map $\mathrm{Y}=\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,3,5,7,9,11,12,14,15)$. (b) Convert the decimal number 567 to base 2, base 8 , base $16 .(10+10$ marks)	K5	CO4
14.	(a) How can we convert a JK flip flop into D and T flip flops? (b) Discuss the operation of 3-bit up ripple counter. (10 + 10 marks)	K5	CO4
SECTION E			
Answer any ONE of the following in 250 words		(1 $\times 20=20)$	
15.	With the relevant circuit diagrams demonstrate that the NAND and NOR gates are universal gates.	K6	CO5
16.	(a) Explain the working of a JK flip flop and give its truth table. (b) Explain the working of shift right and shift left shift register with a neat diagrams. (10+10 marks)	K6	CO5

\$\$\$\$\$\$\$

