LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

U.G. DEGREE EXAMINATION - ALLIED
 THIRD SEMESTER - NOVEMBER 2022

UPH 3405 - DIGITAL ELECTRONICS

Date: 01-12-2022
Time: 09:00 AM - 12:00 NOON

PART - A

Answer ALL questions

(10x 2 = 20 Marks)

1. Convert the octal number (75) $)_{8}$ to its decimal equivalent.
2. Convert (1020) ${ }_{10}$ into a hexadecimal number.
3. Define negative and positive logic.
4. Draw the symbol of a NOR gate and give its truth table.
5. Write any two laws of Boolean algebra.
6. What is meant by sum of products method?
7. What is a flip flop?
8. Draw the diagram of a T flip flop and give its truth table.
9. What is a register?
10. List the different types of counters.

PART - B

Answer any FOUR questions

11 a) Convert $(11110)_{2}$ into a decimal number.
(2.5 marks)
b) Convert (1486) $)_{10}$ into an octal number.
c) Convert (600) 10 into a hexadecimal number.
(2.5 marks)
(2.5 marks)

12 With a neat diagram, explain the working of AND, OR, NOT and Ex-OR gates.
13 Simplify using K map $Y=F(A, B, C, D)=\Sigma(0,1,3,5,7,9,11,12,13,14,15)$.
14 Explain the working of a clocked RS flip flop and give its truth table.
15 With a neat diagram, describe the working of a shift right shift register.
16 Discuss in detail the working of a synchronous up counter.
PART - C

Answer any FOUR questions

17 Explain NAND and NOR as universal gates with a neat diagram and draw their truth tables.
18 What is a shift register? With a neat logic diagram explain the working of parallel-in serial- out and parallel-in parallel-out shift registers.
19 a) Add 12 and 13 using binary number system.
b) Convert (456) ${ }_{10}$ to octal number.
c) Convert the decimal number $(1542)_{10}$ to hexadecimal number.
d) Find the equivalent decimal number for the binary number 110011001_{2}.

20 With a neat diagram and truth table explain the working of a JK flip flop.
21 Draw the circuit diagram of $\operatorname{Mod} 4$ and $\operatorname{Mod} 8$ counters and explain its working.
22 Simplify using K map: $\mathrm{Y}=\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0.1 .2 .4,5,10,11,14,15)$ and draw the logic circuit for the simplified expression.

