LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - PHYSICS

THIRD SEMESTER - NOVEMBER 2022
UPH 3502 - MATHEMATICAL PHYSICS - II

Date: 03-12-2022
Time: 09:00 AM - 12:00 NOON

3. Match the following
($5 \times 1=5$)

(a)	Wave equation Differential equations	K2	CO1
(b)	Heat equation Signal processing	K2	CO1
(c)	Euler's Method Integration	K2	CO1
(d)	Fourier Transform Vibrating Strings	K2	CO1
(e)	Simpson's rule Hot bodies	K2	CO1
4.	State True or False	($5 \times 1=5$)	
(a)	Heat equation is applied to a vibrating string.	K2	CO1
(b)	Wave equation is a third-order linear partial differential equation.	K2	CO1
(c)	The transform of the sum of two functions is given by a convolution integral.	K2	CO1
(d)	Extrapolation is the technique of computing the value of the function outside the range of given values.	K2	CO1
(e)	Simpson's one-third rule is used in numerical differentiation.	K2	CO1

SECTION - B

Answer any TWO of the following

| 5. | Solve $\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0$ by the method of separation of variables. | K 3 | CO 2 |
| :--- | :--- | :--- | :--- | :--- |
| 6. | State and prove the convolution theorem in Fourier transform. | K 3 | CO 2 |
| | The following table displays the population of a town during the last six decades.
 Calculate the population in 2006 using any suitable interpolation formula. | | |
| \qquadYear 1971 1981 1991 2001 2011 2021
 Population in lakhs 12 15 20 27 39 52 | K 3 | CO 2 | |
| 8. | Apply Newton-Raphson method to obtain a root of $x^{3}-2 x-5=0$, upto two decimal
 places. | K 3 | CO 2 |

SECTION - C

Answer any TWO of the following

Employ the method of least squares to fit a straight line through the following data
9.

Voltage (V)	1	2	3	4
Current (mA)	1.7	1.8	2.3	3.2

Write down one dimensional heat equation and solve it to obtain the general solution.
Calculate $\int_{0}^{\pi} \sin x d x$ by using Trapezoidal rule. Compare the result with the result
11. of actual integration.

K 4	CO 3
K 4	CO 3
K 4	CO 3

(a) Mention some applications of Fourier Transforms.
12.
(b) Find the Fourier transform of the function.

$$
\begin{equation*}
f(x)=e^{-a x^{2}}, \text { where } a>0 . \tag{3+7}
\end{equation*}
$$

SECTION - D

Answer any ONE of the following

$(1 \times 20=20)$
13.
(a) Derive the one-dimensional wave equation for a vibrating string.
(b) Obtain the D'Alembert's solution of 1D wave equation.

Estimate the numerical solution of $\frac{d y}{d x}=x+y$ for $x=0$ to 0.2 using Euler's method
14.
with the initial condition $x_{o}=0$ and $y_{o}=1$, taking $h=0.025$.

SECTION - E

Answer any ONE of the following
15. Apply Newton's forward and backward interpolation formulae to find the temperature of an object during the $44^{\text {th }}$ minute from the following data and compare the results.

Time (min)	10	20	30	40	50
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	46	66	81	93	101

16. Write the Fourier Transform of the functions
a) $f(x)=\left\{\begin{array}{c}1+\frac{x}{a},-a<x<0 \\ 1-\frac{x}{a}, 0<x<a \\ 0, \text { otherwise }\end{array}\right.$
b) $f(x)=\left\{\begin{array}{l}1, \text { for }|x|<a \\ 0, \text { for }|x|>a\end{array}\right.$

10$)$	K 5	CO 4
0$)$	K 5	CO 4

共

號
\qquad

