LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034								
B.Sc. DEGREE EXAMINATION – PHYSICS THIRD SEMESTER – NOVEMBER 2022								
						UPH 3502 – MATHEMATICAL PHYSICS - II		
Date Tim	Date: 03-12-2022 Dept. No. Max. : 100 Mark							
1 1111	C. 09.00 / INI - 12.00 NOON							
SECTION - A								
Q. No.	Answer ALL questions							
1.	MCQ	(5 x 1 = 5)						
	The partial differential equation $\frac{\partial^2 u}{\partial x^2} - \frac{1}{\partial x^2} \frac{\partial^2 u}{\partial x^2} = 0$ is		CO1					
(a)	(i) Wave equation (ii) Heat equation (iii) Laplace equation (iv) Helmholtz equation	K1						
	Problems leading to solution of partial differential equations with	K1	CO1					
(b)	conditions are known as boundary value problems.							
	(i) boundary (ii) initial (iii) boundary and initial (iv) none							
(c)	Newton's interpolation formula can be applied to spaced data.	K1	CO1					
	(i) equally (ii) unequally (iii) both (iv) hard to say							
	Linear property of Fourier transform is							
	(i) $F{f(x) + g(x)} = F{f(x)} + F{g(x)}$							
(d)	(ii) $F{f(x) + g(x)} = F{f(x)} + F{g(x)} + 2 F{f(x)} * F{g(x)}$							
	(iii) $F{f(x) + g(x)} = F{f(x)} * F{g(x)}$							
	(iv) $F{f(x) + g(x)} = F{f(x)} - F{g(x)}$							
(e)	In Newton-Raphson method if the curve $f(x)$ is constant then	K1	CO1					
	(i) $f(x) = 0$ (ii) $f'(x) = c$ (iii) $f''(x) = 0$ (iv) $f'(x) = 0$	111	001					
2.	Definition/Formula (S							
(a)	Partial Differential Equation	K1	CO1					
(b)	Even and odd functions	K1	CO1					
(c)	Interpolation	K1	CO1					
(d)	Laplace equation	K1	CO1					
(e)	Euler's modified method	K1	CO1					

3.	Match the following	(5	5 x 1 =	= 5)				
(a)	Wave equation	ave equation Differential equations						
(b)	Heat equation	Signal processing						
(c)	Euler's Method Integration							
(d)	Fourier Transform	Vibrating Strings	K2	CO1				
(e)	Simpson's rule	Simpson's rule Hot bodies						
4.	State True or False							
(a)	Heat equation is applied to a vibrating	g string.	K2	CO1				
(b)	Wave equation is a third-order linear	partial differential equation.	K2	CO1				
(c)	The transform of the sum of two functions of the sum of the sum of two functions of two functions of the sum of two functions of the sum of two functions of two function	tions is given by a convolution integral.	K2	CO1				
(d)	Extrapolation is the technique of computing the value of the function outside the range of given values.							
(e)	Simpson's one-third rule is used in numerical differentiation.							
		GEORION D						
SECTION - B								
	$\frac{\partial^2 u}{\partial t^2 u} = \frac{1}{2} \frac{\partial^2 u}{\partial t^2 u}$							
5.	Solve $\frac{\partial w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial w}{\partial \theta^2} = 0$ by the method of separation of variables.							
6.	State and prove the convolution theorem in Fourier transform.							
	Calculate the population in 2006 using	ulation of a town during the last six decades.						
7.	Vear 10	K3	CO2					
	Population in lakhs	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
8.	Apply Newton-Raphson method to obtain a root of $x^3 - 2x - 5 = 0$, upto two decimal places.							
		SECTION – C						
Answ	wer any TWO of the following (2							
	Employ the method of least squares to	fit a straight line through the following data						
9.	Current (mA)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K4	CO3				
10.	Write down one dimensional heat equa	ation and solve it to obtain the general solution.	K4	CO3				
11	Calculate $\int_0^{\pi} sinx dx$ by using Trapezoidal rule. Compare the result with the result							
11.	of actual integration.	-	К4	03				

	(a) Mantian	a some angligations of Fouri		a fa ma a						
	(a) Mention some applications of Fourier Transforms.									
12.	(b) Find the Fourier transform of the function.							K4	CO3	
$f(x) = e^{-ax^2}$, where $a > 0$. (3 +								(3 + 7)		
SECTION – D										
Answer any ONE of the following (1							x 20	= 20)		
	(a) Derive the one-dimensional wave equation for a vibrating string. (10)									
13.	(b) Obtain the D'Alembert's solution of 1D wave equation. (10)						K5	CO4		
	Estimate the numerical solution of $\frac{dy}{dx} = x + y$ for $x = 0$ to 0.2 using Euler's method									
14. with the initial condition $x_o = 0$ and $y_o = 1$, taking $h = 0.025$.									K5	CO4
SECTION – E										
Answ	ver any ONE	E of the following						(1	x 20	= 20)
15.	Apply Newton's forward and backward interpolation formulae to find the temperature of an object during the 44 th minute from the following data and compare the results.									
		Time (min)	10	20	30	40	50		K6	CO5
		Temperature (°C)	46	66	81	93	101			
16.	Write the Fourier Transform of the functions (15+5)									
	a) $f(x) = \begin{cases} 1 + \frac{x}{a}, -a < x < 0\\ 1 - \frac{x}{a}, 0 < x < a\\ 0, otherwise \end{cases}$ b) $f(x) = \begin{cases} 1, \ for \ x < a\\ 0, \ for x > a \end{cases}$						K6	CO5		
			****	****						