	LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034						
B.Sc. DEGREE EXAMINATION – PHYSICS							
i k	FIFTH SEMESTER – NOVEMBER 2022						
4	UPH 5603 – PROBLEMS SOLVING SKILLS IN PHYSICS						
	Date: 30-11-2022 Dept. No. Max. : 100 Marks Fime: 09:00 AM - 12:00 NOON Max. : 100 Marks						
	PART - A						
Q. No	Answer all Questions(10 x 2 = 20 Marks)						
1	If a charge of 200 micro coulombs is placed at the origin, then the electric field produced at a distance of 10 mm is a) $18 \times 10^7 NC^{-1}$ b) $9 \times 10^7 NC^{-1}$ c) $3 \times 10^7 NC^{-1}$ d) zero						
2	If electrostatic potential $V = 3x^2y + 5$, then electric field \vec{E} is (a) $-6xy\hat{\imath} - 3x^2\hat{\jmath}$ b) $-6xy\hat{\imath} + 3x^2\hat{\jmath}$ c) $6xy\hat{\imath} - 3x^2\hat{\jmath}$ d) $-6xy\hat{\imath}$						
3	Temperature of an ideal gas is increased such that the most probable speed of molecules increases by a factor of 4. By what factor will the v_{rms} increase? a) 1 b) 2 c) 4 d) 16						
4	In a heat engine based on Carnot's cycle heat is added to the working substance at constant a) Entropy b) Pressure c) Temperature d) Volume						
5	During free expansion of an ideal gas under adiabatic condition, the internal energy of the gas a) Decreases b) Initially decreases & then increases c) Increases d) Remains constant						
6	 Gibbs free energy G in thermodynamics is defined as G = H – TS where, H is enthalpy, S is entropy and T is temperature In an isothermal, isobaric, reversible process G a) Remains constant but not zero b) Varies linearly c) Varies non-linearly d) Is zero 						
7	Seven uniform disks, each of mass m and radius r, are inscribed inside a regular hexagon as shown in the figure.						
	The moment of inertia of this system of seven disks, about an axis passing through the central disk and perpendicular to the plane of the disks is (a) $\frac{7}{2}mr^2$ b) $7mr^2$ c) $\frac{13}{2}mr^2$ d) $\frac{55}{2}mr^2$						

8	If the wave function control is the wave function of the second s		wing relation $\int_{-\infty}^{\infty} \Psi$	$^*\Psi dx = 49$, then the value of				
	(a) $\frac{1}{7}$	(b) 7	$(c)\frac{1}{49}$	(d) 49				
9	If two physical quantities A and B are measured with error ΔA and ΔB , what is the error in the physical quantity Z=A+B							
	(a) $\Delta A - \Delta B$	(b) $\Delta A + \Delta B$	$(c) \frac{\Delta A}{\Delta B}$	(d) $\Delta A \times \Delta B$				
10	A planet has average density same as that of the earth but it has only 1/8 th the mass of the earth. If acceleration due to gravity at the surface of the earth is g_e and g_p for the planet, the ratio $\frac{g_p}{g_e}$ is							
	(a) ¹ / ₂	(b) 2	(c) ¹ ⁄ ₄	(d) 4				
	PART – B							
Ans	Answer any four Questions(4 x 7.5 = 30 Marks)							
11	11 (a) If two events are separated by spatial interval of 9×10^9 m but occurs simultaneously, calcul time interval of these two with respect to a frame which travels at a speed 0.8 <i>c</i> . (3.5 Mat							
		mass m_s revolving in a angular momentum of		adius r_s around earth of mass I f the given quantities.	M has total energy (4 Marks)			
12	$2\varphi_2 - 3i\varphi_3$. If each (b) the expectation	nergy is measured in th on of value of energy.	nis state, then calcu	te square well potential is given late (a) the probability of get Hermitian (b) calculate the eig	tting E ₁ , E ₂ and E ₃ (4 Marks)			
13	(a) Plot the follow	wing functions: (i) ln x	e^{-x^2} (iii) e^{-x^2} (iii) co	s hx	(3 Marks)			
				appropriate dimensions. The the percentage of relative err				
14	U			to steam completely. Cal is 4186 J/kg/K and Latent he	culate the change at of vaporization			
15	have their usual r a) Calcula		the system	N, where b is constant and the	other symbols			
16	-	tic wave represented b $(10^{-8} z - 10t) \hat{y}$ tra	•	n medium. Determine the med	lium.			

	PART – C				
Answer any four Question(4 x 12.5 = 50 Marks)					
17	A thin massless rod of length $2l$ has equal point masses m attached to its end (see figure).				
	The rod is rotating about an axis passing through its center making an angle θ with it. Calculate the				
	magnitude of the rate of change of angular momentum $\left \frac{d\vec{L}}{dt}\right $				
18	The wave function of the electron in one dimension is given by $\Psi(x) = \begin{cases} 0 & for \ x < 0 \\ 2\sqrt{3} \ e^{-x}(1 - e^{-x}) & for \ x \ge 0 \end{cases}$ Calculate the ratio between $\langle x \rangle$ and most probable value x_m				
19	A square loop of wire with sides of length L lies in the first quadrant of the XY plane with one corner at the origin. In the region there is a non-uniform time dependent magnetic field $\vec{B}(y,t) = B_0 \text{ Ky}^3 t^2 \hat{k}$ where k is a constant. Find the magnitude of the induced emf in the loop.				
20	a) A long solenoid of radius a and n turns per unit length carries a time dependent current $I(t) = I_0 \cos \omega t$ in the $\hat{\Phi}$ direction. Find the magnitude of electric field at a distance r from the axis (both inside and outside) the solenoid. (8 Marks)				
	b) Calculate the Poynting vector for the following case				
	$\vec{E} = E_0 \sin \sin (kz + \omega t) \hat{j}$ and $\vec{B} = \frac{kE_0}{\omega} \sin \sin (kz + \omega t) \hat{i}$ (4.5 Marks)				
21	A sample of ideal gas has pressure P_0 , volume V_0 and temperature T_0 . It isothermally expands to twice its original volume. It is then compressed at constant pressure to have original volume V_0 . Finally the gas is heated at constant volume to get the original temperature.				
	a) Draw the VT diagram for the process.b) Calculate the heat absorbed in the process.				
22	(a) Plot the following functions. (i) $x \sin x$ (ii) $x^4 - x^2$ (iii) $\tanh x$ (iv) $\ln(\ln x)$ (v) xe^{-x^2} (10 Marks)				
	(b) A student wants to determine the acceleration due to gravity by simple pendulum experiment. The length of pendulum $1 \pm 0.01 m$ and time period of the pendulum $2 \pm 0.01 s$. Calculate acceleration due to gravity and the error involved in it. (2.5 Marks)				
	@ @ @ @ @ @ @ @				